Answer:
236.9g
Explanation:
Given parameters:
Volume of gas = 81.3L
Pressure of gas = 204kPa
temperature of gas = 95°C
Unknown:
Mass of carbondioxide gas = ?
Solution:
To solve this problem, the ideal gas law will be well suited. The ideal gas law is a fusion of Boyle's law, Charles's law and Avogadro's law.
Mathematically, it is expressed as;
PV = nRT
the unknown here is n which is the number of moles;
P is the pressure, V is the volume, R is the gas constant and T is the temperature.
convert pressure into atm
101.325KPa = 1atm
204 kPa =
= 2atm
Convert temperature to Kelvin; 95 + 273 = 368K
2 x 81.3 = n x 0.082 x 368
n =
= 5.38moles
Since the unknown is mass;
Mass = number of moles x molar mass
Molar mass of carbon dioxide = 12 + 2(16) = 44g/mol
Mass = 5.38 x 44 = 236.9g
Answer:
hydrogen + oxygen = water
H2SO4 ---> 2H^+ + SO4^2-
Hence n H+ = 9 mols
Mass of H = nM = (9*1) = 9g
Alternately
mass of H2SO4= nM= 4.5*98= 441
Mass of H= mass h2so4 * molar mass of H/molar mass of h2so4
Mass of H= 441 * 2/98 = 9g
Answer: I just took the test. The answer is D! (A single replacement reaction takes place because sodium is more reactive than hydrogen.)
Answer:
No.
Explanation:
During chemical reaction, atomes cannot be created or destroyed, they can only react together to form <em>E</em><em>l</em><em>e</em><em>m</em><em>e</em><em>n</em><em>t</em><em> </em>or <em>C</em><em>o</em><em>m</em><em>p</em><em>o</em><em>u</em><em>n</em><em>d</em><em> </em>at the <em>P</em><em>r</em><em>o</em><em>d</em><em>u</em><em>c</em><em>t</em><em> </em>side.