A stationary charge is located between the poles of a horseshoe magnet. The magnetic force exerted by the charge is zero.
<h3>What is charge?</h3>
Charge is the physical property of matter which cause a particle to attract or repel when placed in its field.
A stationary charged particle does not interact with a static magnetic field. A charge placed in a magnetic field experiences a magnetic force. There will be no magnetic force acting on a stationary charge. The charge must be moving in order to have magnetic force on it.
Thus, the magnetic force exerted by the charge is zero.
Learn more about charge.
brainly.com/question/19886264
#SPJ4
<span>A measurement
that both magnitude and direction is a vector quantity. An example of this is a
moving car. The car exerts force due to its thrust and weight that runs in it. This
will give us the magnitude of the car. The resulting motion of the car in terms
of displacement, velocity and acceleration that determines its direction makes
it a vector quantity. On the other hand, a measurement that has only magnitude is
a scalar quantity. The energy exerted by the engine of the car is a scalar
quantity.</span>
Ah ha ! Very interesting question.
Thought-provoking, even.
You have something that weighs 1 Newton, and you want to know
the situation in which the object would have the greatest mass.
Weight = (mass) x (local gravity)
Mass = (weight) / (local gravity)
Mass = (1 Newton) / (local gravity)
"Local gravity" is the denominator of the fraction, so the fraction
has its greatest value when 'local gravity' is smallest. This is the
clue that gives it away.
If somebody offers you 1 chunk of gold that weighs 1 Newton,
you say to him:
"Fine ! Great ! Golly gee, that's sure generous of you.
But before you start weighing the chunk to give me, I want you
to take your gold and your scale to Pluto, and weigh my chunk
there. And if you don't mind, be quick about it."
The local acceleration of gravity on Pluto is 0.62 m/s² ,
but on Earth, it's 9.81 m/s.
So if he weighs 1 Newton of gold for you on Pluto, its mass will be
1.613 kilograms, and it'll weigh 15.82 Newtons here on Earth.
That's almost 3.6 pounds of gold, worth over $57,000 !
It would be even better if you could convince him to weigh it on
Halley's Comet, or on any asteroid. Wherever he's willing to go
that has the smallest gravity. That's the place where the largest
mass weighs 1 Newton.
Answer:
The beach ball's velocity at the moment it was tossed into the air is <u>4.9 m/s.</u>
Explanation:
Given:
Time taken by the ball to reach maximum height is, 
We know that, velocity of an object at the highest point is always zero. So, final velocity of the ball is, 
Also, acceleration acting on the ball is always due to gravity. So, acceleration of the ball is, 
The negative sign is used as acceleration is a vector and it acts in the downward direction.
Now, we have the equation of motion relating initial velocity, final velocity, acceleration and time given as:

Where, 'u' is the initial velocity.
Plug in the given values and solve for 'u'. This gives,

Therefore, the beach ball's velocity at the moment it was tossed into the air is 4.9 m/s