Answer:
<u>According </u><u>to </u><u>second </u><u>law </u><u>of </u><u>motion</u><u>,</u><u>t</u><u>he acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.</u>
<em>So </em><em>simply</em><em>,</em><em> </em><em>it </em><em>can </em><em>be </em><em>affected </em><em>due </em><em>to </em><em>increasing </em><em>force </em><em>as </em><em>there </em><em>is </em><em>close </em><em>relationship </em><em>between </em><em>momentum.</em>
Explanation:
<em>The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion.</em>
<em>I </em><em>hope </em><em>it </em><em>was </em><em>helpful </em><em>for </em><em>you </em><em>:</em><em>)</em>
Answer:
0.0021576N
Explanation:
F=(k)(q1q2/r^2)
F=(8.99×10^9)(3×10^-6)(2×10^-6)/(5^2)
F=0.0021576N
Convection is the movement caused within a fluid by the tendency of hotter and therefore less dense material to rise, and colder, denser material to sink under the influence of gravity, which consequently results in transfer of heat
According to funtriva.com, the piece that allows you to adjust the amount of light that's coming through the microscope is called the adjustable diaphragm. It is located under to stage (where what you are observing is placed on) and can be rotated to make the light<span> intensity change</span>
Force=mass*acceleration. So 88kg*10 m/s^2=880 newtons