A compression is where the particles in the air are closer together, so where those black lines are closer together.
A rarefaction is the opposite, where they're spread out.
The wavelength is the distance between two compressions or rarefactions (i.e. two peaks or troughs on a graph), therefore thats the horizontal arrows.
The amplitude is the distance from the centre of the wave to the peak or trough, so that is the vertical distance on the diagram.
Answer:
v = 0.999981c m/s
Explanation:
Using the time dilation equation

T = stationary time = 100 years
T₀ = 11/12 years = 0.917 years
v = speed of travel in the space = ?
c = speed of light = 3 * 10⁸ m/s


v = 299987395.57 m/s
v = 2.99 * 10⁸ m/s
v = 0.999981c m/s
Answer:
(a) 498.4 Hz
(b) 442 Hz
Solution:
As per the question:
Length of the wire, L = 1.80 m
Weight of the bar, W = 531 N
The position of the copper wire from the left to the right hand end, x = 0.40 m
Length of each wire, l = 0.600 m
Radius of the circular cross-section, R = 0.250 mm = 
Now,
Applying the equilibrium condition at the left end for torque:



The weight of the wire balances the tension in both the wires collectively:



Now,
The fundamental frequency is given by:

where

(a) For the fundamental frequency of Aluminium:


where


(b) For the fundamental frequency of Copper:


where


When gasoline burns in the engine, it is oxidised and energy is liberated.
Here the chemical energy of gasoline is converted into mechanical energy to move the vehicle.
Answer:
2023857702.507m
Explanation:

recall from newton's law of gravitation
G=gravitational constant
mshew=50g
melephant=5*10^3kg
rearth=radius of the earth 6400km or 6400000m
mearth= masss of the earth
Gm(shrew)m(earth)/r(earth)^2 = Gm(elephant)m(earth)/r^2
strike out the left hand side and right hand side variables
m(shrew)/r(earth)^2 = m(elephant)/r^2
r^2 = m(elephant).r(earth)^2 / m(shrew) .........make r^2 the subject of the equation
r^2=
r^2=40960000000000
r=2023857702.507m