Answer:
<em>Before the parachute opens: Immediately on leaving the aircraft, the skydiver accelerates downwards due to the force of gravity. There is no air resistance acting in the upwards direction, and there is a resultant force acting downwards. The skydiver accelerates towards the ground.</em>
<em>Once the parachute is opened, the air resistance overwhelms the downward force of gravity. The net force and the acceleration on the falling skydiver is upward. An upward net force on a downward falling object would cause that object to slow down. The skydiver thus slows down.</em>
<h3>
I HOPE THIS WILL HELP YOU IF NOT THEN SORRY</h3>
HAVE A GREAT DAY :)
You would also have to eat right lol
Answer:
F = 0.483 N
Explanation:
Initial momentum, 
Final momentum, 
Time, t = 31 s
We need to find the force of a lead ball. We can use here the impulse momentum theorem.

F is force

So, the force is 0.483 N.
Answer is B- 200 m
Given:
m (mass of the car) = 2000 Kg
F = -2000 N
u(initial velocity)= 20 m/s.
v(final velocity)= 0.
Now we know that
<u>F= ma</u>
Where F is the force exerted on the object
m is the mass of the object
a is the acceleration of the object
Substituting the given values
-2000 = 2000 × a
a = -1 m/s∧2
Consider the equation
<u>v=u +at</u>
where v is the initial velocity
u is the initial velocity
a is the acceleration
t is the time
0= 20 -t
t=20 secs
s = ut +1/2(at∧2)
where s is the displacement of the object
u is the initial velocity
t is the time
v is the final velocity
a is the acceleration
s= 20 ×20 +(-1×20×20)/2
<u>s= 200 m</u>
Liquids<span> are not </span>packed<span> as tightly as </span>solids<span>. And gases are very loosely </span>packed<span>. The spacing of the molecules enables </span>sound<span> to travel much faster through a </span>solid<span> than a gas. </span>Sound<span> travels about four times faster and farther in water than it does in air.</span>