Your answer would be,
Molarity = moles of solute/volume of solution we needed, 29.22(g)(mol) of NaCI
= 29.22(g)/58.44(g)(mol^-1)(1)/1(L)
= 0.500(mol)(L^-1)
Hope that helps!!!
We will use this formlula: Mass in grams = Number of moles x Molecular mass of 1 mole.
Since, we know the avagadro number is 6.02 x 10²³, we only have two unknown values left which are the molecular mass of CH3OH and its mole.
Molecular Mass: C = 12, H= 1, O = 16, since we have C=12, H4 = 4, O = 16, we will add them up: 12 + 4 + 16 =32
We know that one mole of anything = 6.02 x 10²³.
So we will use this formula to find the mole of methanol: Number of moles = Number of molecules / Avagadro number
Number of moles of CH3OH = (9.79 x 10^24)/6.02 x 10²³) = 16.263 moles.
Now we know that the molecular mass = 32 and the mole is = 16.263.
Now we can find its mass by using this formula: <span>Mass in grams = Number of moles x Molecular mass of 1 mole.
</span>
Mass in grams = 16.263 x 32 = 520g
As what we can see on the graph of the Boyle's Law, we can imply that volume and pressure are inversely proportional. The gas law furthermore explains that at this condition, the temperature must be held constant. The law can be furthermore be explained using the equation:
PV = k
The correct answer is option a, that is, it gets broken down.
A set of metabolic reactions and procedures, which occurs in the cells of organisms to transform biochemical energy from nutrients into ATP, and then discharge waste components is known as cellular respiration. At the time of cellular respiration, a molecule of glucose gets dissociated slowly into water and carbon dioxide. With it, some of the ATP is generated directly in the reactions, which transform glucose.
The elements in each group have the same number of electrons in the outer orbital. Or also called valence electrons. Khan academy has a great video online explaining why this happens. (It only happens for main group elements). Here is a link (sorry you can’t click it in Brainly) https://www.khanacademy.org/science/chemistry/periodic-table/copy-of-periodic-table-of-elements/v/periodic-table-valence-electrons. Feel free to message me for a better explanation, I would explain now but I’m not sure how much you know about this. If you know how to write an electron configuration you can see how all the electron configurations for the same group (not the transitional metals only the main groups) have the same number of valence electrons. I hope that helped, sorry I was vague about the explanation :)