Answer:
3.07 Cal/g
Explanation:
Step 1: Calculate the heat absorbed by the calorimeter
We will use the following expression.
Q = C × ΔT
where,
- C: heat capacity of the calorimeter (37.60 kJ/K = 37.60 kJ/°C)
- ΔT: temperature change (2.29 °C)
Q = 37.60 kJ/°C × 2.29 °C = 86.1 kJ
According to the law of conservation of energy, the heat released by the candy has the same magnitude as the heat absorbed by the calorimeter.
Step 2: Convert 86.1 kJ to Cal
We will use the conversion factor 1 Cal = 4.186 kJ.
86.1 kJ × 1 Cal/4.186 kJ = 20.6 Cal
Step 3: Calculate the number of Cal per gram of candy
20.6 Cal/6.70 g = 3.07 Cal/g
Answer:
Because of the difficulties of measuring the atmosphere's properties above the earth's reachable surface
Explanation:
Hello,
In this case, meteorology is the branch of science studying the atmosphere in its weather processes and forecasting and it had a late development because of the difficulties of measuring the atmosphere's properties above the earth's reachable surface. We cannot forget that even nowadays, it is very difficult to predict upcoming weathers with the 100 % assurance and with many days in advance.
Best regards.
Charcoal with a carbon-14 activity of 0.60 compared to new wood has less than 5,730 years.
<h3>What is a radioactive isotope?</h3>
A radioactive isotope is an element in nature that emit radioactivity in a given period of time (e.g., the half-life for C14 is equal to 5,730 years).
Radioactive dating is a technique to measure the age of an element by measuring its radioactive activity.
In conclusion, charcoal with a carbon-14 activity of 0.60 compared to new wood has less than 5,730 yr.
Learn more about radioactive dating here:
brainly.com/question/8831242
#SPJ1
Answer:
0.085 moles of N₂O₅ are needed
Explanation:
Given data:
Mass of NO₂ produces = 7.90 g
Moles of N₂O₅ needed = ?
Solution:
2N₂O₅ → 4NO₂ + O₂
Number of moles of NO₂ produced :
Number of moles = mass/ molar mass
Number of moles = 7.90 g/ 46 g/mol
Number of moles = 0.17 mol
now we will compare the moles of NO₂ with N₂O₅.
NO₂ : N₂O₅
4 : 2
0.17 : 2/4×0.17 = 0.085 mol
Thus, 0.085 moles of N₂O₅ are needed.