Answer:
The 5/16 – 24 UNF is stronger because it has more tensile load capacity.
Tensile load capacity for M8 -1.25 = 5670 lb
Tensile load capacity for M8 -1 = 6067 lb
Explanation:
For 5/16 - 18 UNC thread:
D = 0.3125
n = 18
Therefore the tensile load capacity is = 100000 X (0.7854 X (0.3125 - 0.9743/ 18) ^2
= 5243 lb.
Similarly for 5/16 - 24 UNF , only the n value changes to 24
we get the tensile load capacity = 5806.6 lb
Hence the 5/16 – 24 UNF is stronger because it has more tensile load capacity.
For metric Bolts:
We have to consider all values in SI units
Strength = 689 MPa
We get for M8 -1.25:
Tensile load capacity as = 689 X 36.6 = 25223 N = 5670 lb
For M8 -1:
Tensile load capacity as = 689 X 39.167 = 26986 N = 6067lb
Explanation:
Conduction:
Heat transfer in the conduction occurs due to movement of molecule or we can say that due to movement of electrons in the two end of same the body. Generally, phenomenon of conduction happens in the case of solid . In conduction heat transfer takes places due to direct contact of two bodies.
Convection:
In convection heat transfer of fluid takes place due to density difference .In simple words we can say that heat transfer occur due to motion of fluid.
Answer:
116.3 electrons
Explanation:
Data provided in the question:
Time, t = 2.55 ps = 2.55 × 10⁻¹² s
Current, i = 7.3 μA = 7.3 × 10⁻⁶ A
Now,
we know,
Charge, Q = it
thus,
Q = (7.3 × 10⁻⁶) × (2.55 × 10⁻¹²)
or
Q = 18.615 × 10⁻¹⁸ C
Also,
We know
Charge of 1 electron, q = 1.6 × 10⁻¹⁹ C
Therefore,
Number of electrons past a fixed point = Q ÷ q
= [ 18.615 × 10⁻¹⁸ ] ÷ [ 1.6 × 10⁻¹⁹ ]
= 116.3 electrons
Answer:
Option D
160 kHz
Explanation:
Since we must use at least one synchronization bit, total message signal is 15+1=16
The minimum sampling frequency, fs=2fm=2(5)=10 kHz
Bandwith, BW required is given by
BW=Nfs=16(10)=160 kHz