Answer:
a) 6.4 mg/l
b) 5.6 mg/l
Explanation:
Given data:
effluent Discharge Q_w = 1.0 m^3.s
Ultimate BOD L_w = 40 mg/l
Discharge of stream Q_r = 10 m^3.s
Stream ultimate BOD L_r = 3 mg/l
a) Ultimate BOD of mixture

b) utlimate BOD at 10,000 m downstream

putting 
t = 0.578 days
we know



Answer: The actual tracking weight of a stereo cartridge that is set to track at 3 g on a particular changer can be regarded as a continuous rv X with the following
Explanation:
Answer:
a) Q = 251.758 kJ/mol
b) creep rate is 
Explanation:
we know Arrhenius expression is given as

where
Q is activation energy
C is pre- exponential constant
At 700 degree C creep rate is
% per hr
At 800 degree C creep rate is
% per hr
activation energy for creep is
= 
![\frac{1\%}{5.5 \times 10^{-2}\%} = e^{[\frac{-Q}{R(800+273)}] -[\frac{-Q}{R(800+273)}]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%5C%25%7D%7B5.5%20%5Ctimes%2010%5E%7B-2%7D%5C%25%7D%20%3D%20e%5E%7B%5B%5Cfrac%7B-Q%7D%7BR%28800%2B273%29%7D%5D%20-%5B%5Cfrac%7B-Q%7D%7BR%28800%2B273%29%7D%5D%7D)
![\frac{0.01}{5.5\times 10^{-4}} = ln [e^{\frac{Q}{8.314}[\frac{1}{1073} - \frac{1}{973}]}]](https://tex.z-dn.net/?f=%5Cfrac%7B0.01%7D%7B5.5%5Ctimes%2010%5E%7B-4%7D%7D%20%3D%20ln%20%5Be%5E%7B%5Cfrac%7BQ%7D%7B8.314%7D%5B%5Cfrac%7B1%7D%7B1073%7D%20-%20%5Cfrac%7B1%7D%7B973%7D%5D%7D%5D)
solving for Q we get
Q = 251.758 kJ/mol
b) creep rate at 500 degree C
we know





Answer:
Overall ideal mechanical advantage of the machine = 40
Explanation:
Given:
Ideal mechanical advantage of three machine = 2, 4, 5
Find:
Overall ideal mechanical advantage of the machine
Computation:
Overall ideal mechanical advantage of the machine = 2 × 4× 5
Overall ideal mechanical advantage of the machine = 40
Answer:
where are the answer chioces
Explanation: