Answer:
Option B (Starter Control Circuit) is the right option.
Explanation:
- This same switching is normally put upon this isolated side of something like the transmission Arduino microcontroller throughout the configuration that is using the ignition just to command the broadcast.
- It uses a secondary relay isolated to regulate electrical current throughout the solenoid starting system.
All other given options are not related to the given instance. So the above option is correct.
Answer:
$$\begin{align*}
P(Y−X=m|Y>X)=∑kP(Y−X=m,X=k|Y>X)=∑kP(Y−X=m|X=k,Y>X)P(X=k|Y>X)=∑kP(Y−k=m|Y>k)P(X=k|Y>X).
Explanation:
P(Y−X=m|Y>X)=∑kP(Y−X=m,X=k|Y>X)=∑kP(Y−X=m|X=k,Y>X)P(X=k|Y>X)=∑kP(Y−k=m|Y>k)P(X=k|Y>X).
Answer:
0.2 kcal/mol is the value of
for this reaction.
Explanation:
The formula used for is:


where,
= Gibbs free energy for the reaction
= standard Gibbs free energy
R =Universal gas constant
T = temperature
Q = reaction quotient
k = Equilibrium constant
We have :
Reaction quotient of the reaction = Q = 46
Equilibrium constant of reaction = K = 35
Temperature of reaction = T = 25°C = 25 + 273 K = 298 K
R = 1.987 cal/K mol

![=-1.987 cal/K mol\times 298 K\ln [35]+1.987 cal/K mol\times 298K\times \ln [46]](https://tex.z-dn.net/?f=%3D-1.987%20cal%2FK%20mol%5Ctimes%20298%20K%5Cln%20%5B35%5D%2B1.987%20cal%2FK%20mol%5Ctimes%20298K%5Ctimes%20%5Cln%20%5B46%5D)

1 cal = 0.001 kcal
0.2 kcal/mol is the value of
for this reaction.
Answer:
The conversion in the real reactor is = 88%
Explanation:
conversion = 98% = 0.98
process rate = 0.03 m^3/s
length of reactor = 3 m
cross sectional area of reactor = 25 dm^2
pulse tracer test results on the reactor :
mean residence time ( tm) = 10 s and variance (∝2) = 65 s^2
note: space time (t) =
t =
Vo = flow metric flow rate , L = length of reactor , A = cross sectional area of the reactor
therefore (t) =
= 25 s
since the reaction is in first order
X = 1 - 
= 1 - X
kt = In 
k = In
/ t
X = 98% = 0.98 (conversion in PFR ) insert the value into the above equation then
K = 0.156 
Calculating Da for a closed vessel
; Da = tk
= 25 * 0.156 = 3.9
calculate Peclet number Per using this equation
0.65 = 
therefore

solving the Non-linear equation above( Per = 1.5 )
Attached is the Remaining part of the solution