Answer:
Depends on how long the string is, how heavy the weight, and how high you let go of it.
But it will most likely hit you :)
The wires that will have the least resistance is :
C. A short thick wire
in order to get the least resistence, you need the wire to be the lowest in length and the highest in Area
hope this helps
Answer:
1.686 m
Explanation:
From coulomb's law,
F = kq1q2/r² ...................................... Equation 1
Where F = electrostatic force between the two charges, q1 = first charge, q2 = second charge, r = distance between the charges.
making r the subject of the equation,
r = √(kq1q2/F).......................... Equation 2
Given: F = 5.05 N, q1 = 28.0 μC = 28×10⁻⁶ C, q2 = 57.0 μC = 57.0×10⁻⁶ C
Constant: k = 9.0×10⁹ Nm²/C².
Substituting into equation 2
r = √(9.0×10⁹×28×10⁻⁶×57.0×10⁻⁶/5.05)
r = √(14364×10⁻³/5.05)
r = √(14.364/5.05)
r = √2.844
r = 1.686 m
r = 1.686 m.
Thus the distance must be 1.686 m
Answer:

Explanation:
Given:
Mass of the cannonball (M) = 20 kg
Mass of the marble (m) = 0.002 kg
Distance between the cannonball and marble (d) = 0.30 m
Universal gravitational constant (G) = 
Now, we know that, the gravitational force (F) acting between two bodies of masses (m) and (M) separated by a distance (d) is given as:

Plug in the given values and solve for 'F'. This gives,

The same force is experienced by both cannonball and marble.
Therefore, the gravitational force of the marble is 