1 watt = 1 joule per sec
11,000 Watts = 11,000 joules per sec
The frequency doesn't matter.
Answer:
Δx = 4.68 x 10⁻³ m = 4.68 mm
Explanation:
The distance between the consecutive maxima, in Young's Double Slit Experiment is given bu the following formula:
Δx = λD/d
So, the distance between the eighth order maximum and the fourth order maximum on the screen will be given as:
Δx = 4λD/d
where,
Δx = distance between eighth order maximum and fourth order maximum=?
λ = wavelength = 487 nm = 4.87 x 10⁻⁷ m
d = slit separation = 0.2 mm = 2 x 10⁻⁴ m
D = Distance between slits and screen = 48 cm = 0.48 m
Therefore,
Δx = (4)(4.87 x 10⁻⁷ m)(0.48 m)/(2 x 10⁻⁴ m)
<u>Δx = 4.68 x 10⁻³ m = 4.68 mm</u>
Answer: 330.88 J
Explanation:
Given
Linear velocity of the ball, v = 17.1 m/s
Distance from the joint, d = 0.47 m
Moment of inertia, I = 0.5 kgm²
The rotational kinetic energy, KE(rot) of an object is given by
KE(rot) = 1/2Iw²
Also, the angular velocity is given
w = v/r
Firstly, we calculate the angular velocity. Since it's needed in calculating the Kinetic Energy
w = v/r
w = 17.1 / 0.47
w = 36.38 rad/s
Now, substituting the value of w, with the already given value of I in the equation, we have
KE(rot) = 1/2Iw²
KE(rot) = 1/2 * 0.5 * 36.38²
KE(rot) = 0.25 * 1323.5
KE(rot) = 330.88 J