Answer:
105.70 mm
Explanation:
Poisson’s ratio, v is the ratio of lateral strain to axial strain.
E=2G(1+v) where E is Young’s modulus, v is poisson’s ratio and G is shear modulus
Since G is given as 25.4GPa, E is 65.5GPa, we substitute into our equation to obtain poisson’s ratio

Original length 

Where
is final diameter,
is original diameter,
is final length and
is original length.


Therefore, the original length is 105.70 mm
Answer:
maybe it's twang because of the blade tension
Answer:

Explanation:
We are given:
m = 1.06Kg

T = 22kj
Therefore we need to find coefficient performance or the cycle


= 5
For the amount of heat absorbed:

= 5 × 22 = 110KJ
For the amount of heat rejected:

= 110 + 22 = 132KJ
[tex[ q_H = \frac{Q_L}{m} [/tex];
= 
= 124.5KJ
Using refrigerant table at hfg = 124.5KJ/Kg we have 69.5°c
Convert 69.5°c to K we have 342.5K
To find the minimum temperature:
;

= 285.4K
Convert to °C we have 12.4°C
From the refrigerant R -134a table at
= 12.4°c we have 442KPa
Answer:
The maximum power dissipation of the zener diode 112mV.
Explanation:
The minimum zener current should be:
5 * Iza= 5 * 1= 5 mA.
Since the load current can be at maximum 15 mA, we should select R so that, IL= 15 mA.
A zener current of 5 mA is available, Thus the current should be 20 mA, which leads to,
R =
= 470 Ω.
Maximum power dissipated in the diode occours when, IL=0 is
Pmax = 20 *
* 5.6 = 112mV.