Answer:
Change in electric potential energy ∆E = 365.72 kJ
Explanation:
Electric potential energy can be defined mathematically as:
E = kq1q2/r ....1
k = coulomb's constant = 9.0×10^9 N m^2/C^2
q1 = charge 1 = -2.1C
q2 = charge 2 = -5.0C
∆r = change in distance between the charges
r1 = 420km = 420000m
r2 = 160km = 160000m
From equation 1
∆E = kq1q2 (1/r2 -1/r1) ......2
Substituting the given values
∆E = 9.0×10^9 × -2.1 ×-5.0(1/160000 - 1/420000)
∆E = 94.5 × 10^9 (3.87 × 10^-6) J
∆E = 365.72 × 10^3 J
∆E = 365.72 kJ
Answer:
Explanation:
(b) The initial velocity is added to that due to acceleration by gravity. The velocity is increased linearly by gravity at the rate of 9.8 m/s². The average velocity of the pebble will be its velocity halfway through the 2-second time period.* That is, it will be ...
4 m/s + (9.8 m/s²)(2 s)/2 = 13.8 m/s . . . . average velocity
__
(a) The distance covered in 2 seconds at an average velocity of 13.8 m/s is ...
d = vt
d = (13.8 m/s)(2 s) = 27.6 m
The water is about 27.6 m below ground.
_____
* We have chosen to make use of the fact that the velocity curve is linear, so the average velocity is half the sum of initial and final velocities:
vAvg = (vInit + vFinal)/2 = (vInit + (vInit +at))/2 = vInit +at/2
__
If you work this in a straightforward way, you would find distance as the integral of velocity, then find average velocity from the distance and time.

Explanation:
Given that,
Radius R= 2.00
Charge = 6.88 μC
Inner radius = 4.00 cm
Outer radius = 5.00 cm
Charge = -2.96 μC
We need to calculate the electric field
Using formula of electric field

(a). For, r = 1.00 cm
Here, r<R
So, E = 0
The electric field does not exist inside the sphere.
(b). For, r = 3.00 cm
Here, r >R
The electric field is

Put the value into the formula


The electric field outside the solid conducting sphere and the direction is towards sphere.
(c). For, r = 4.50 cm
Here, r lies between R₁ and R₂.
So, E = 0
The electric field does not exist inside the conducting material
(d). For, r = 7.00 cm
The electric field is

Put the value into the formula


The electric field outside the solid conducting sphere and direction is away of solid sphere.
Hence, This is the required solution.
Answer:
what if I do and b then someone else c I don't have enough time pls