Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

(This is correct because the horizontal motion has acceleration zero). Then:

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

Then, plugging in the given values, we obtain:

Finally, the effective spring constant of the firing mechanism is 1808N/m.
It makes calculations with very large and small numbers easier.
Scientific notation is a system used in order to It makes calculations with very large and small numbers easier. It is useful as it allows very large number that would take a lot of space to write otherwise, and it allows them to be calculated easier.
for example is a incredible large number, but written in this form is immediately understandable and useful for calculation.
Speed has the dimensions of distance divided by time. The SI unit of speed is themetre<span> per second, but the most common unit of speed in everyday usage is the kilometre per </span>hour<span> or, in the US and the UK, miles per </span>hour<span>. For air and marine travel the knot is commonly used.</span>
When the canoe leaked, the boat
sank because it has a leak. The boat must have a strong base at its bottom to
enable itself to float. If this is damaged, the water can now enter due to the
hole thereby increasing the velocity of water coming in.
Kinetic energy is the energy for a catapult.