Molarity is the ratio of the moles and the volume. The mass of 2.6 M sodium phosphate solution is 2131.22 gms.
<h3>What is mass?</h3>
Mass is the product of the moles and the molar mass of the substance. It is given as,
Mass = Moles × Molar mass
The moles from molar concentration is used to calculate mass as:
Mass = Molarity × volume × molar mass
= 2.6 × 5.0 × 163.94
= 2131.22 gms
Therefore, 2131.22 gms is the mass of sodium phosphate.
Learn more about mass here:
brainly.com/question/9829994
#SPJ1
Answer: The ratio of atoms in calcium bicarbonate ; Ca : H : C : O = 1:2:2:6.
The ratio of atoms in lithium sulfide; Li : S = 2 : 1
Explanation:
In calcium bicarbonate:
In a molecular formula of calcium carbonate there are:
Number of Calcium atoms = 1
Number of Hydrogen atom = 1 × 2 = 2
Number of Carbon atoms = 1 × 2 = 2
Number of Oxygen atoms = 3 × 2 = 6
So, Ca : H : C : O = 1 : 2 : 2 : 6
In lithium sulfide :
In a molecular formula of lithium sulfide there are:
Number of Lithium atoms = 1 × 2 = 2
Number of Sulfur atoms = 1
So, the Li : S = 2 : 1
Answer:
7.38654 in 54 grams
Explanation:
To get moles, you divide grams of a substance by molecular weight. The molecular weight of CO2 is 44 g/mol. 54g divided by 44/mol is 1.227moles.
You then need to multiply moles by Avogadro’s constant (6.022x10^23). That gives you 7.38654x10^23 molecules in 54 grams of CO2.
Answer:
Mg(OH)2(s) + 2HCl(aq) → 2H2O(l) + MgCl2(aq)
Explanation: