The number of grams of Ag2SO4 that could be formed is 31.8 grams
<u><em> calculation</em></u>
Balanced equation is as below
2 AgNO3 (aq) + H2SO4(aq) → Ag2SO4 (s) +2 HNO3 (aq)
- Find the moles of each reactant by use of mole= mass/molar mass formula
that is moles of AgNO3= 34.7 g / 169.87 g/mol= 0.204 moles
moles of H2SO4 = 28.6 g/98 g/mol =0.292 moles
- use the mole ratio to determine the moles of Ag2SO4
that is;
- the mole ratio of AgNo3 : Ag2SO4 is 2:1 therefore the moles of Ag2SO4= 0.204 x1/2=0.102 moles
- The moles ratio of H2SO4 : Ag2SO4 is 1:1 therefore the moles of Ag2SO4 = 0.292 moles
- AgNO3 is the limiting reagent therefore the moles of Ag2SO4 = 0.102 moles
<h3> finally find the mass of Ag2SO4 by use of mass=mole x molar mass formula</h3>
that is 0.102 moles x 311.8 g/mol= 31.8 grams
The answer that complete the sentence is "Arrhenius base".
The complete sentence is: A substance that increases the concentration of hydroxide ions in aqueous solution is an Arrhenius base.
Arrhenius' acid and base model says that an acid is a substance that contains hydrogen and ionizes in aqueous solution producing protons (H+) and a base is a substance that cointains hydroxide and release it in aqueous solution.
The balanced reaction equations are;
a) 4 NaClO + H2S → 4 NaCl + H2SO4
b)6Ce^4+ + I^– + 6OH^– → 6 Ce^3+ + IO3^– + 3H2O
<h3>What is a balanced redox reaction?</h3>
A redox reaction is said to be balanced when the number of electrons gained is equal to the number of electrons lost.
Let us now write the balanced reaction equations one after the other. Thus;
a) 4 NaClO + H2S → 4 NaCl + H2SO4
b)6Ce^4+ + I^– + 6OH^– → 6 Ce^3+ + IO3^– + 3H2O
Learn more about redox reaction:brainly.com/question/13293425
#SPJ1
L = 0 to n-1. Hence, it can have values 0, 1, 2.
<span>m = -l to +l. Hence, it can have values -2, -1, 0, 1, 2 </span>
<span>s = +1/2 and -1/2</span>
Answer:
B. Cell Type
Explanation:
that is the answer i believe