Answer:
The value of the Michaelis–Menten constant is 0.0111 mM.
Explanation:
Michaelis–Menten 's equation:
![v_o=V_{max}\times \frac{[S]}{(K_m+[S])}=k_{cat}[E_o]\times \frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=v_o%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D%3Dk_%7Bcat%7D%5BE_o%5D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)
![V_{max}=k_{cat}[E_o]](https://tex.z-dn.net/?f=V_%7Bmax%7D%3Dk_%7Bcat%7D%5BE_o%5D)
Where:
 = rate of formation of products
 = rate of formation of products 
[S] = Concatenation of substrate
![[K_m]](https://tex.z-dn.net/?f=%5BK_m%5D) =  Michaelis constant
 =  Michaelis constant 
 = Maximum rate achieved
  = Maximum rate achieved
 = Catalytic rate of the system
 = Catalytic rate of the system 
![[E_o]](https://tex.z-dn.net/?f=%5BE_o%5D) = Initial concentration of enzyme
 = Initial concentration of enzyme
On substituting all the given values
We have :

[S] = 0.10 mM
![\frac{v_o}{V_{max}}=\frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=%5Cfrac%7Bv_o%7D%7BV_%7Bmax%7D%7D%3D%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)


The value of the Michaelis–Menten constant is 0.0111 mM.
 
        
             
        
        
        
Continental tropical would be the answer I think