Answer:
Electrons get farther from the nucleus.
Explanation:
By going from the top to the bottom of a group, the atomic number increases. That would mean that:
- The number of orbitals increases, as there are more electrons.
- A higher atomic number implies an increasing number of neutrons.
- As there are more electrons, they get farther from the nucleus. The farther an electron is from the nucleus, the easier it is for the electron to be removed from the atom.
Answer: It would be malleable, solids, luster, conductors, reactive
Explanation:
Answer:
Energy is absorbed, and an emission line is produced.
Explanation:
Electrons are present and revolving continuously in the orbits that are present around the nucleus. The energy of electron are fixed and unable to move to other orbits due to the strong attractive force of the proton which is present in the nucleus of the atom. If the electron wants to jump from the first energy level to the second energy level, so the electron has to absorb enough energy which can overcome the attractive force of proton.
Answer:
21.86582KJ
Explanation:
The graphical form of the Arrhenius equation is shown on the image attached. Remember that in the Arrhenius equation, we plot the rate constant against the inverse of temperature. The slope of this graph is the activation energy and its y intercept is the frequency factor.
Applying the equation if a straight line, y=mx +c, and comparing the given equation with the graphical form of the Arrhenius equation shown in the image attached, we obtain the activation energy of the reaction as shown.