The Balanced chemical equation for above reaction will be :

The Coefficients will be :
So, Correct option is :
A. 3, 1, 1, 3
_____________________________

Mass of sodium is 23 and mass of fluirine is 19 there mass of NaF is 42
42 g = 1 mole therefor 4.5 moles will have
4.5 × 42 = 189 g
C. 6 Valence electrons. Remember that the family that they are in will determine the number of valence electrons that element will have. Sulfur is in family 16 so it will have 6 Valence electrons.
An oxide of nitrogen contains 30.45 mass % N, if the molar mass is 90± 5 g/mol the molecular formula is N₂O₄.
<h3>What is molar mass?</h3>
The molar mass of a chemical compound is determined by dividing its mass by the quantity of that compound, expressed as the number of moles in the sample, measured in moles. A substance's molar mass is one of its properties. The compound's molar mass is an average over numerous samples, which frequently have different masses because of isotopes.
<h3>How to find the molecular formula?</h3>
The whole-number multiple is defined as follows.
Whole-number multiple = 
The empirical formula mass is shown below.
Mw of empirical formula = Mw of N+ 2 x (Mw of O)
= 14.01 g/mol + 2 x (16.00 g/mol)
= 46.01 g/mol
With the given molar mass or the molecular formula mass, we can get the whole-number multiple for the compound.
Whole-number multiple =
≈ 2
Multiplying the subscripts of NO2 by 2, the molecular formula is N(1x2)O(2x2)= N2O4.
To learn more about molar mass visit:
brainly.com/question/12127540
#SPJ4
Question:
a. a direct linear relationship
b. an inverse linear relationship
c. a direct nonlinear relationship
d. an inverse nonlinear relationship
Answer:
The correct option is;
d. An inverse nonlinear relationship
Explanation:
From the universal gas equation, we have;
P·V = n·R·T
Where we have the temperature, T and the number of moles, n constant, therefore, we have
P×V = Constant, because, R, the universal gas constant is also constant, hence;
P×V = C

Since P varies with V then the graphical relationship will be an inverse nonlinear as we have
V P C
1 5 5
2 2.5 5
3 1.67 5
4 1.25 5
5 1 5
6 0.83 5
7 0.7 5
8 0.63 5
9 0.56 5
10 0.5 5
Where:
V = Volume
P = Pressure
C = Constant = 5
P = C/V
The graph is attached.