K = C + 273, so 27°C = 27+273 = 300 K
1 dg = 100 mg, so 20 dg = 20×100 = 2,000 mg
Answer:
I really hope this is right I think this is Diffuse I'm sorry if its worng
Higher resolution cannot be achieved with a light microscope because wavelength of light is larger that wavelength of electrons.
<h3>What is light microscope?</h3>
Light microscope is defined as the type of microscope that makes use of visible light to magnify objects into images that can be observed.
The wavelength of light is larger than that of the electrons, therefore, higher resolution cannot be achieved with a light microscope.
Learn more about microscope here:
brainly.com/question/15744335
#SPJ1
To solve this problem we will apply the concepts related to energy conservation, so the potential energy in the package must be equivalent to its kinetic energy. From there we will find the speed of the package in the vertical component. The horizontal component is given, as it is the same as the one the plane is traveling to. Vectorially we will end up finding its magnitude. So,


Here,
m = Mass
g = Gravity
h = Height
v = Velocity
Rearranging to find the velocity

Replacing,


Using the vector properties the magnitude of the velocity vector would be given by,



Therefore the package is moving to 66.2m/s
Answer:
Given: a projectile of initial launch velocity(V) and launch angle ∅ and no air resistance. At the maximum height, the projectile would have a zero contribution of speed from the vertical component(Vy) Therefore, if we say Vx=Vcos∅ is the only speed the projectile has at the instant of maximum height then we can replace Vx with 1/5V and write 1/5V=Vcos∅. Solving for the the launch angle ∅, gives Inverse Cos(1/5)=78.5 degrees.