Answer: C) 200 N
Explanation:
The force
is defined as:

Where:
is the mass of the object
is the acceleration
Then:

Finally:

Hence, the correct option is C.
<h2>
Answer:5

,133.6

,51.18

</h2>
Explanation:
Let
,
be the horizontal and vertical components of velocity.
Question a:
Horizontal component of velocity is the ratio of range and time of flight.
So,horizontal component of velocity is 
So,
Question b:
Time of flight=
So,
Maximum height is given by 
So,maximum height is 
Question c:
The vertical velocity is already calculated in Question b.

Answer: Remain unchanged
Explanation:
The boat with water barrel overboard floats in swimming pool when weight of the water displaced by the boat is equal to the buoyant force acting on the boat.
When the water in the barrel is poured overboard, the level of the swimming pool level would remain unchanged as the weight of the boat with the water and barrel would remain unchanged ( as the density and volume of the whole system remains same) and hence, the weight of the water (of the swimming pool) displaced by the boat would remain same.
A boat loaded with a barrel of water floats in a swimming pool. When the water in the barrel is poured overboard, the swimming pool level will <u>remain unchanged. </u>
Answer:
t = 2.58*10^-6 s
Explanation:
For a nonconducting sphere you have that the value of the electric field, depends of the region:

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
R: radius of the sphere = 10.0/2 = 5.0cm=0.005m
In this case you can assume that the proton is in the region for r > R. Furthermore you use the secon Newton law in order to find the acceleration of the proton produced by the force:

Due to the proton is just outside the surface you can use r=R and calculate the acceleration. Also, you take into account the charge density of the sphere in order to compute the total charge:

with this values of a you can use the following formula:

hence, the time that the proton takes to reach a speed of 2550km is 2.58*10^-6 s