AgNO₃ and Cu(NO₃)₂ are dissolved in water
Answer:
126.0g of water were initially present
Explanation:
The electrolysis of water occurs as follows:
2H₂O(l) ⇄ 2H₂(g) + O₂(g)
<em>Where 2 moles of water produce 2 moles of hydrogen and 1 mole of oxygen.</em>
<em />
To find the mass of water we need to determine moles of oxygen and hydrogen, thus:
<em>Moles Hydrogen:</em>
14.0g H₂ ₓ (1mol / 2g H₂) = 7 moles H₂
<em>Moles Oxygen:</em>
112.0g O₂ ₓ (1mol / 32g) = 3.5 moles O₂
Based on the chemical equation, the moles of water initially present were 7 moles (That produce 7 moles H₂ and 3.5 moles O₂). The mass of 7 moles of H₂O is:
7 moles H₂O * (18g / mol) =
<h3>126.0g of water were initially present</h3>
A.)49.4974874 moles or 49.5 moles
B.)2.980808730172671e+25 or 3e+25
You would have to show me the answers
The molarity of aqueous lithium bromide, LiBr solution is 0.2 M
We'll begin by calculating the number of mole of Pb(NO₃)₂ in the solution.
- Volume = 10 mL = 10 / 1000 = 0.01 L
- Molarity of Pb(NO₃)₂ = 0.250 M
- Mole of Pb(NO₃)₂ =?
Mole = Molarity x Volume
Mole of Pb(NO₃)₂ = 0.25 × 0.01
Mole of Pb(NO₃)₂ = 0.0025 mole
Next, we shall determine the mole of LiBr required to react with 0.0025 mole of Pb(NO₃)₂
Pb(NO₃)₂ + 2LiBr —> PbBr₂ + 2LiNO₃
From the balanced equation above,
1 mole of Pb(NO₃)₂ reacted with 2 mole of LiBr.
Therefore,
0.0025 mole of Pb(NO₃)₂ will react with = 2 × 0.0025 = 0.005 mole of LiBr
Finally, we shall determine the molarity of the LiBr solution
- Mole = 0.005 mole
- Volume = 25 mL = 25 / 1000 = 0.025 L
- Molarity of LiBr =?
Molarity = mole / Volume
Molarity of LiBr = 0.005 / 0.025
Molarity of LiBr = 0.2 M
Learn more about molarity: brainly.com/question/10103895