Answer:
Le Chatelier's principle can be applied in explaining the results
Explanation:
According to Le Chatelier's principle, when a constraint such as a change in concentration in this case is imposed on a chemical system in equilibrium, the system will adjust itself in such a way as to annul the constraint imposed.
Hence, when the color of the solution was more like that of the control, the reaction would shift towards the left. Similarly, when the color was more like it was towards the reactant, the reaction would shift towards the right.
If we were to prepare calcium oxalate, we should prepare it in a base solution. This is because when the base was added to calcium oxalate, it did not form any precipitate but when an acid was added to the calcium oxalate, it formed a precipitate.
Use ideal gas law PV=nRT
Convert 5.00 atm to kPa since units must be relative to gas constant (r).
To do this multiply 5 by 101.03 (1 atm=101.3kPa)
Now plug in (506.5kPa)(10.0L)=n(8.31 L•atm/mol•K)(373K)
Solve for n (moles) to get approximately 1.634 mol. Now use dimensional analysis (1.634mol/1)(22.4L/1mol) = 36.6L
Both noticed that different atoms gives different colours of light when they are exposed to flame.
The molar mass of methylammonium bromide is 111u.
<h3>What is molar mass?</h3>
The molar mass is defined as the mass per unit amount of substance of a given chemical entity.
Multiply the atomic weight (from the periodic table) of each element by the number of atoms of that element present in the compound.
Add it all together and put units of grams/mole after the number.
Atomic weight of H is 1u
Atomic weight of N is 14u
Atomic weight of C is 12u
Atomic weight of Br is 79u
Calculating molar mass of
=2(1 x3+ 14+12+ 1 x 3 +79) = 111u
Hence, the molar mass of methylammonium bromide is 111u.
Learn more about molar mass here:
brainly.com/question/12127540
#SPJ1
Answer:
The correct answer is the final pair: C4H10 and C2H5
Explanation:
Took the test and it was right. :)