Answer:
The minimum possible coefficient of static friction between the tires and the ground is 0.64.
Explanation:
if the μ is the coefficient of static friction and R is radius of the curve and v is the speed of the car then, one thing we know is that along the curve, the frictional force, f will be equal to the centripedal force, Fc and this relation is :
Fc = f
m×(v^2)/(R) = μ×m×g
(v^2)/(R) = g×μ
μ = (v^2)/(R×g)
= ((25)^2)/((100)×(9.8))
= 0.64
Therefore, the minimum possible coefficient of static friction between the tires and the ground is 0.64.
Answer:
The rocket has to be launched 8 m from the hoop
Explanation:
Let's analyze this problem, the rocket is on a car that moves horizontally, so the rocket also has the same speed as the car; The initial horizontal rocket speed is (v₀ₓ = 3.0 m/s).
On the other hand, when starting the engines we have a vertical force, which creates an acceleration in the vertical axis, let's use Newton's second law to find this vertical acceleration
F -W = m a
a = (F-mg) / m
a = F/m -g
a = 7.0/0.500 - 9.8
a = 4.2 m/s²
We see that we have a positive acceleration and that is what we are going to use in the parabolic motion equations
Let's look for the time it takes for the rocket to reach the height (y = 15m) of the hoop, when the rocket fires its initial vertical velocity is zero (I'm going = 0)
y =
t + ½ a t²
y = 0 + ½ a t²
t = √ 2y/a
t = √( 2 15 / 4.2)
t = 2.67 s
This time is also the one that takes in the horizontal movement, let's calculate how far it travels
x = v₀ₓ t
x = 3 2.67
x = 8 m
The rocket has to be launched 8 m from the hoop
Answer:
The image height is 0.00283 m or 0.283 cm and is inverted due to the negative sign
Explanation:
u = Object distance = 9 m
v = Image distance = 1.7 cm (as the image is forming on the retina)
= Object height = 1.5 m
Magnification

The image height is 0.00283 m or 0.283 cm and is inverted due to the negative sign
By calculating the crests, you can find the waves' frequency.
Hope this helps!
I'm assuming it was to keep the data consistent? The further you are from a heat source the less heat will get to you as the temperature tries to reach equilibrium and the waves start to spread out, so you should keep everything the same distance to get consistent results. I don't have any information so this is just my assumption