Answer:
a) Time = 2.67 s
b) Height = 35.0 m
Explanation:
a) The time of flight can be found using the following equation:
(1)
Where:
: is the final position in the horizontal direction = 80 m
: is the initial position in the horizontal direction = 0
: is the initial velocity in the horizontal direction = 30 m/s
a: is the acceleration in the horizontal direction = 0 (the stone is only accelerated by gravity)
t: is the time =?
By entering the above values into equation (1) and solving for "t", we can find the time of flight of the stone:

b) The height of the hill is given by:
Where:
: is the final position in the vertical direction = 0
: is the initial position in the vertical direction =?
: is the initial velocity in the vertical direction =0 (the stone is thrown horizontally)
g: is the acceleration due to gravity = 9.81 m/s²
Hence, the height of the hill is:
I hope it helps you!
(3) 10.1 second
Using equation of motion 500 = (0.5)(9.81)t^2. Rearranging, t = sqrt(1000/9.81) = 10.1s
This is what I know
<span>Splitting securing A wedge is a triangular shaped tool, a compound and portable inclined plane, and one of the six classical simple machines. </span>
Answer:
Tension in the chains - In a chain drive, technically, you have a closed-chain (which has no end) going around 2 pulley or gears; looking closely you have 2 parallel chains going in opposite direction. If kept in horizontal direction, the one below the other is the slack side and the other the tight side. The tension on the upper or tight side is more than the slack side. So you need to keep in mind to keep your chain drive tight so that there is no loss or rotation or lags.
Sizes of the pulley/gear - The chain will be warped around a pair of pulley or gear. The sizes of these pulley/gear will also determine the efficiency of the chain drive (consider one big and one small)
Number of pulley/gear - If the number of pulley/gear is more and chain wrapped on it with little complexity will result in decrease in efficiency because of extra tension.
Length of the chain drive - You cannot have much too long chain drive. It will make your slack side more heavy because the end are further away. You have to apply more power and possibilities of lag increases decreasing efficiency. In an ideal situation, this won't happen, but this world isn't ideal.
Friction between chains & pulley/gear - If you have studied gears (involving its teeth), you will come to know that there is friction offered on the two meeting surfaces.
Angle of contact - This would have been explained better with a diagram. Although, if you are familiar with the terms you won't have difficulty understanding. Angle of contact is the angle the chain forms with the pulley/gear at the point of contact with the center of the pulley. The angle of contact should not be too small, or else the things will be slippery.
Explanation: