Answer:
I=1.48 A
Explanation:
Given that
B=3.1 x 10⁻5 T
b= 4.2 cm
l= 9.5 cm
The relationship for magnetic field and current given as

Where

By putting the values


D=26.03 m⁻¹



I=1.48 A
Outside to the inside: Capsid, core, genetic material
The true statements about magnetic fields and forces will be A,D and E.
<h3>What is a magnet?</h3>
An iron piece,alloy, or other substance with its constituent atoms arranged in such a way that it shows magnetism qualities,
The function of the magnet is attracting other iron-containing objects or aligning itself in a magnetic field.
There are two poles of the magnet;
1. North Pole.
2. South Pole.
The same poles repel each other, while the opposite poles attract each other. In a sense, south-south and north-north repel. While the north-south and the south-north attract each other.
The correct statements are;
(A). The north pole attracts the south pole of a magnet.
(D)Forces caused by magnetic fields are weaker farther from the magnet.
(E)Magnetic forces can act on an object even if the object isn't touching the magnet.
Hence, the true statements about magnetic fields and forces will be A,D and E.
To learn more about the magnet, refer to the link;
brainly.com/question/13026686
#SPJ1
The mass contributes with the time of thermal energy transfer with respect to the material type but most importantly the material type will determine rate at which the material absorbs the transfer of heat or thermal energy by either three types, conduction, convection and radiation.
Answer:
the final temperature is T f = 64.977 ° C≈ 65°C
Explanation:
Since the thermus is insulated, the heat absorbed by the ice is the heat released by the coffee. Thus:
Q coffee + Q ice = Q surroundings =0 (insulated)
We also know that the ice at its melting point , that is 0 °C ( assuming that the thermus is at atmospheric pressure= 1 atm , and has an insignificant amount of impurities ).
The heat released by coffee is sensible heat : Q = m * c * (T final - T initial)
The heat absorbed by ice is latent heat and sensible heat : Q = m * L + m * c * (T final - T initial)
therefore
m co * c co * (T fco - T ico) + m ice * L + m ice * c wat * (T fwa - T iwa) = 0
assuming specific heat capacity of coffee is approximately the one of water c co = c wa = 4.186 J/g°C and the density of coffee is the same as water
d co = dw = 1 gr/cm³
therefore m co = d co * V co = 1 gr / cm³ * 106 cm³ = 106 gr
m co * c wat * (T f - T ico) + m ice * L + m ice * c wat * (T f - T iwa) = 0
m co * c wat * T f+ m ice * c wat * T f = m ice * c wat * T iwa + m co * c wat * Tico -m ice * L
T f = (m ice * c wat * T iwa + m co * c wat * Tico -m ice * L ) /( m co * c wat * + m ice * c wat )
replacing values
T f = (11 g * 4.186 J/g°C * 0°C + 106 g * 4.186 J/g°C*80°C - 11 g * 334 J/gr) / ( 11 g * 4.186 J/g°C + 106 g * 4.186 J/g°C* ) = 64,977 ° C
T f = 64.977 ° C