Answer:
Coefficient of friction = 0.5
Explanation:
Given:
Mass of box = 5 kg
Force applied = 20 N
Acceleration = 2 m/s²
Find:
Coefficient of friction
Computation:
Friction force = Mass x Acceleration.
Friction force = 5 x 2
Friction force = 10 N
Coefficient of friction = Friction force / Force applied
Coefficient of friction = 10 / 20
Coefficient of friction = 0.5
Answer:
c. 0.02 C and 4 J
Explanation:
Applying,
Q = CV................ Equation 1
Where Q = Charge, C = Capacitance of the capacitor, V = Voltage.
From the question,
Given: C = 50 μF = 50×10⁻⁶ F, V = 400 V
Substitute these values into equation 1
Q = (50×10⁻⁶)(400)
Q = 0.02 C.
Also Applying
E = CV²/2............. Equation 2
Where E = Energy stored.
Therefore,
E = (50×10⁻⁶ )(400²)/2
E = 4 J
Hence the right option is c. 0.02 C and 4 J
You are currently converting Distance and Length units from Centimeters to Feet 321 Centimeters (cm) = 10.5315 Feet (ft) This is a hard one but see if this helps if not let me now and i can try again..
Answer:
K.E = 100 J
Final P.E = 100 J
Explanation:
The kinetic energy of any object can be given by the following formula:

where,
K.E = Kinetic Energy
m = mass of ball = 2 kg
v = speed of ball
Initially, v = 10 m/s. Therefore, the initial K.E is given as:

<u>K.E = 100 J</u>
Now, at the highest point the K.E of the ball becomes zero. because the ball stops for a moment at the highest point and its velocity becomes zero. So, from Law of Conservation of energy:
Initial K.E + Initial P.E = Final K.E + Final P.E
Initial P.E is also zero due to zero height initially.
K.E + 0 = 0 + Final P.E
<u>Final P.E = 100 J</u>
C. Melt 1g if solid into liquid.