Answer:
Angle of refraction for red light is
Angle of refraction for blue light is
Explanation:
It is given refractive index for red light is 
Refractive index of blue light 
Angle of incidence 
According to law of refraction 
For red light 



Therefore angle of refraction for red light is 
Similarly for blue light 


r = 
Therefore angle of refraction for blue light is 
Explanation:
Earth or any planet are actually born from huge clouds of gas and dust. Their stellar mass are fairly distributed at a radius from the axis of rotation. Gravitational force cause the cloud to come together. Now the whole gathered in smaller area. Now, individual particles come close to the roational axis. Thus, decreasing the moment of inertia of the planet.
As
I=mr^2
reducing r reduces I. However, the angular moment of the system remains always conserved. So, to conserve the angular momentum the angular velocity of the planet increases and so did the otational kinetic energy
d(t) = 1.1t² + t + 1
The constant speed required to cover the same distance between t = 3 to t = 5 is the same as the average speed over that same time interval. It is given by:
v = Δx/Δt
v = average speed, Δx = change in distance, Δt = elapsed time
Given values:
Δx = d(5) - d(3) = 19.6ft
Δt = 5s - 3s = 2s
Plug in and solve for v:
v = 19.6/2
v = 9.8ft/s
D. both b. and c. Obviously adding more gas but reducing the volume because of the limited space in the container.
Answer:
I think the 1st statement is right.
Explanation:
Wind patterns doesn't stay the same.
Waves don't follow the same patterns.
Waves move further up the shore.
I didn't hear about "waves adding" before..so i guess 1st statement is right.