Newtons law of motion for every action there’s an equal and opposite reaction.
Answer:
a = 8.06 m/s²
Explanation:
The acceleration of this car can be found using the first equation of motion:

where,
a = acceleration = ?
vf = final speed = 26.8 m/s
vi = initial speed = 0 m/s
t = time = 3.323 s
Therefore,

<u>a = 8.06 m/s²</u>
You draw a straight line from the start point to the end point. It doesn't matter what route was actually followed for the trip.
The displacement vector (SI units) is
![\vec{r} =At\hat{i}+A[t^{3}-6t^{2}]\hat{j}](https://tex.z-dn.net/?f=%5Cvec%7Br%7D%20%3DAt%5Chat%7Bi%7D%2BA%5Bt%5E%7B3%7D-6t%5E%7B2%7D%5D%5Chat%7Bj%7D)
The speed is a scalar quantity. Its magnitude is

Answer: At√(t⁴ - 12t³ + 36t² + 1)