The spring has a spring constant of 1.00 * 10^3 N/m and the mass has been displaced 20.0 cm then the restoring force is 20000 N/m.
Explanation:
When a spring is stretched or compressed its length changes by an amount x from its equilibrium length then the restoring force is exerted.
spring constant is k = 1.00 * 10^3 N/m
mass is x = 20.0 cm
According to Hooke's law, To find restoring force,
F = - kx
= - 1.00 *10 ^3 * 20.0
F = 20000 N/m
Thus, the spring has a spring constant of 1.00 * 10^3 N/m and the mass has been displaced 20.0 cm then the restoring force is 20000 N/m.
Answer:
(7.8) x (9.8 m/s) = 76.44 m/s
during the time he spent falling.
Since his falling speed was zero when he 'stepped' off of the top,
he hit the ground at 76.44 m/s.
That's about 170 miles per hour.
I'll bet he left one serious crater!
I hope this helps too! :D
Explanation:
Answer:
90.78 rev/min
Explanation:
In first place, we have to do the force balance to determine the minimum angular speed required to avoid slipping. The forces acting here are friction and the force due to circular movement, that is centripetal force. Then, we have:

μmg=mRω^2
ω=
Then, replacing the given values in the expression we have the following result:
ω=1.51 rev/s*60s=90.78 rev/min