Answer:
Final concentrations:
Cu²⁺ = 0
Al³⁺ = 3.13 mmol/L = 84.51 mg/L
Cu = 4.7 mmol/L = 300 mg/L
Al = 0.57 mmol/L = 15.49 mg/L
Explanation:
2Al (s) + 3Cu²⁺ (aq) → 2Al³⁺ (aq) + 3Cu (s)
Al: 27 g/mol ∴ 100 mg = 3.7 mmol
Cu: 63.5 g/mol ∴ 300 mg = 4.7 mmol
3 mol Cu²⁺ _______ 2 mol Al
4.7 mmol Cu²⁺ _____ x
x = 3.13 mmol Al
4.7 mmol of Cu²⁺ will be consumed.
3.13 mmol of Al will be consumed.
4.7 mmol of Cu will be produced.
3.13 mmol of Al³⁺ will be produced.
0.57 mmol of Al will remain.
<h3>Answers:</h3>
1) 2 Units of Ozone
2) 3 Units of Ozone
3) 9 Units of Ozone
<h3>Solution:</h3>
1) From 6 Oxygen Particles;
As given,
3 Oxygen Particles form = 1 Unit of Ozone
So,
6 Oxygen Particles will form = X Units of Ozone
Solving for X,
X = (6 O Particles × 1 Unit of Ozone) ÷ 3 O Particles
X = 2 Units of Ozone
2) From 9 Oxygen Particles;
As given,
3 Oxygen Particles form = 1 Unit of Ozone
So,
9 Oxygen Particles will form = X Units of Ozone
Solving for X,
X = (9 O Particles × 1 Unit of Ozone) ÷ 3 O Particles
X = 3 Units of Ozone
3) From 27 Oxygen Particles;
As given,
3 Oxygen Particles form = 1 Unit of Ozone
So,
27 Oxygen Particles will form = X Units of Ozone
Solving for X,
X = (27 O Particles × 1 Unit of Ozone) ÷ 3 O Particles
X = 9 Units of Ozone
The minerals in hard water react with soap and affect its cleaning capacity. It's still possible to use hard water when washing by using more soap. The additional soap will no longer be affected by the minerals in the water, so they can clean just as effectively, but you'll be wasting more soap this way.
I believe that number 27 is A
The number of molecules that are in balloon are = 2.227 x10^23 molecules
<h3> calculation</h3>
calculate the number of moles of NO
moles = mass/molar mass
molar mass of NO = 14+ 16 = 30 g/mol
moles is therefore= 11.1 g/30g/mol= 0.37 moles
by use of Avogadro's constant that is
1 mole= 6.02 x10^23 molecules
0.37 =? molecules
=(6.02 x10^23 x 0.37 moles)/ 1mole=2.227 x10^23 molecules