Complete Question:
A chemist prepares a solution of silver (I) perchlorate (AgCIO4) by measuring out 134.g of silver (I) perchlorate into a 50.ml volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the silver (I) perchlorate solution. Round your answer to 2 significant digits.
Answer:
13 mol/L
Explanation:
The concentration in mol/L is the molarity of the solution and indicates how much moles have in 1 L of it. So, the molarity (M) is the number of moles (n) divided by the volume (V) in L:
M = n/V
The number of moles is the mass (m) divided by the molar mass (MM). The molar mass of silver(I) perchlorate is 207.319 g/mol, so:
n = 134/207.319
n = 0.646 mol
So, for a volume of 50 mL (0.05 L), the concentration is:
M = 0.646/0.05
M = 12.92 mol/L
Rounded to 2 significant digits, M = 13 mol/L
Answer:the answer is b
Explanation:I took the test and got it right
Answer:
m= 4,599.145 g
Explanation:
Let m = mass, d = density and V = volume of the osmium block.
m = d x V
m = 22.610 g/cm3 x (6.70 x 9.20 x 3.3) cm3
m = 4,599.145 g
Answer:
Explanation:
SF4 forms a trigonal bipyramidal shape and its molecular shape is that of a "see-saw".
Since sulfur is in 3rd period, it violates the octet rule and has more than 8 electrons accompanying its valence shell.
Here's a picture of lewis structure and electron geometry.
When warm air rises, cooler air will move in to replace it, so wind often moves from colder areas to warmer areas. The greater the difference between the high and low pressure or the shorter the distance between the high and low pressure areas, the faster the wind will blow
So the correct answer will be:
When a high and a low pressure air mass are far apart, air moves slowly from high to low pressure