Answer:
Energy transfers to the metal from the water and calorimeter until they are all at room temperature.
Explanation:
i hope this helps
Answer:
a) ΔHvap=35.3395 kJ/mol
b) Tb=98.62 °C
Explanation:
Given the reaction:
C₇H₁₆ (l) ⇔ C₇H₁₆ (g)
Kp=P(C₇H₁₆) since the concentration ratio for a pure liquid is equal to 1.
When
T₁=50°C=323.15K ⇒P₁=0.179
T₂=86°C=359.15K ⇒P₂=0.669
The Clasius-Clapeyron equation is:



ΔHvap=35339.5 J/mol=35.3395 KJ/mol
Normal boiling point ⇒ P=1 atm
Hence, we find the normal boiling point where:
T₁=323.15K
P₁=0.179 atm
P₂=1 atm



T₂=371.77 K= 98.62 °C
Explanation:
An acid is a substance that produces excess hydroxonium ions in solution.
An acid based on the pH scale is a substance that has a low pH. Acid lies within a range of 1-7 on the pH scale.
- A pH of 7 is for neutral compounds like water.
- A pH greater that 7 is for basic compounds.
- In order to raise the pH, we are driving at a substance becoming more neutral or basic.
This can be achieved by adding more base to the solution of the substance. When we add more base, hydroxyl ions will neutralize the excess hydroxonium ions and drag the pH towards that of neutrality.
Addition of more base can eventually make the substance basic.
learn more:
Phosphoric acid brainly.com/question/11062486
#learnwithBrainly
An early model of the atom was developed in 1913 by Danish scientist Niels Bohr (1885–1962). The Bohr model shows the atom as a central nucleus containing protons and neutrons with the electrons in circular orbitals at specific distances from the nucleus . These orbits form electron shells or energy levels, which are a way of visualizing the number of electrons in the various shells. These energy levels are designated by a number and the symbol "n." For example, 1n represents the first energy level located closest to the nucleus.
I need a little more context but I believe you are correct