Answer:
0.5 m
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 0.060 kg
Period (T) = 1.4 s
Lenght (L) =?
NOTE:
1. Acceleration due to gravity (g) = 10 m/s²
2. Pi (π) = 3.14
The length of the pendulum can be obtained as follow:
T = 2π√(L/g)
1.4 = 2 × 3.14 × √(L/10)
1.4 = 6.28 × √(L/10)
Divide both side by 6.28
1.4 / 6.28 = √(L/10)
Take the square of both side
(1.4 / 6.28)² = L/10
Cross multiply
L = 10 × (1.4 / 6.28)²
L = 0.5 m
Therefore, the length of the pendulum is 0.5 m
Answer:
after 38.8 years it will double
correct option is D 38.8 years
Explanation:
given data
population grows rate = 1.8%
to find out
how many years will it take to double
solution
we consider here initial population is x
so after 1 year population will be = (100% + 1.8% ) x = 1.018 x
and after n year population will be = 
so it will double
2x = 
take log both side
log 2 = n log (1.018)
n = 
n = 38.853
so after 38.8 years it will double
correct option is D 38.8 years
The height, h to which the package of mass m bounces to depends on its initial velocity, v and the acceleration due to gravity, g and is given below:

<h3>What are perfectly elastic collision?</h3>
Perfectly elastic collisions are collisions in which the momentum as well as the energy of the colliding bodies is conserved.
In perfectly elastic collisions, the sum of momentum before collision is equal to the momentum after collision.
Also, the sum of kinetic energy before collision is equal to the sum of kinetic energy after collision.
Since some of the Kinetic energy is converted to potential energy of the body;


Therefore, the height to which the package m bounces to depends on its initial velocity and the acceleration due to gravity.
Learn more about elastic collisions at: brainly.com/question/7694106
<span>if we assume the origin is at the dropping point and the object is merely dropped and not thrown up or down then y0 = 0 and v0 = 0. The equation reduces to </span>
<span>y = 0 + 0t + ½gt² </span>
<span>y = ½gt² </span>
<span>t = √(2y/g) </span>
<span>in the ft - lb - s system </span>
<span>y = -100 ft </span>
<span>g = -32.2 ft / s² </span>
<span>t = √(2y/g) </span>
<span>t = √(2(-100) / (-32.2)) </span>
<span>t = 2.5 s</span>