Answer:
N = 38546.82 rpm
Explanation:
= 150 mm

= 17671.45 
= 250 mm

= 49087.78 
The centrifugal force acting on the flywheel is fiven by
F = M (
-
) x
------------(1)
Here F = ( -UTS x
+ UCS x
)
Since density, 





∴
-
= 50 mm
∴ F = 
F = 33618968.38 N --------(2)
Now comparing (1) and (2)

∴ ω = 4036.61
We know


∴ N = 38546.82 rpm
Answer:
Metals have high melting points thus unlikely to degrade when temperatures increase, they can be fabricated and are cost effective due to availability.
Explanation:
Aluminum is the most abundant in the Earth's crust with good thermal and electric properties. It is soft, malleable ,ductile and lighter making it a vital metal in construction industry. An alloy of copper and tin, bronze is a better connector of heat and electricity ,commonly used in automobile industry for bearings and springs production. Steel a carbon alloy has applications in forging and automotive.
R01= 14.1 Ω
R02= 0.03525Ω
<h3>Calculations and Parameters</h3>
Given:
K= E2/E1 = 120/2400
= 0.5
R1= 0.1 Ω, X1= 0.22Ω
R2= 0.035Ω, X2= 0.012Ω
The equivalence resistance as referred to both primary and secondary,
R01= R1 + R2
= R1 + R2/K2
= 0.1 + (0.035/9(0.05)^2)
= 14.1 Ω
R02= R2 + R1
=R2 + K^2.R1
= 0.035 + (0.05)^2 * 0.1
= 0.03525Ω
Read more about resistance here:
brainly.com/question/17563681
#SPJ1
Answer:
vB = - 0.176 m/s (↓-)
Explanation:
Given
(AB) = 0.75 m
(AB)' = 0.2 m/s
vA = 0.6 m/s
θ = 35°
vB = ?
We use the formulas
Sin θ = Sin 35° = (OA)/(AB) ⇒ (OA) = Sin 35°*(AB)
⇒ (OA) = Sin 35°*(0.75 m) = 0.43 m
Cos θ = Cos 35° = (OB)/(AB) ⇒ (OB) = Cos 35°*(AB)
⇒ (OB) = Cos 35°*(0.75 m) = 0.614 m
We apply Pythagoras' theorem as follows
(AB)² = (OA)² + (OB)²
We derive the equation
2*(AB)*(AB)' = 2*(OA)*vA + 2*(OB)*vB
⇒ (AB)*(AB)' = (OA)*vA + (OB)*vB
⇒ vB = ((AB)*(AB)' - (OA)*vA) / (OB)
then we have
⇒ vB = ((0.75 m)*(0.2 m/s) - (0.43 m)*(0.6 m/s) / (0.614 m)
⇒ vB = - 0.176 m/s (↓-)
The pic can show the question.