1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FromTheMoon [43]
3 years ago
11

Calculate the number of vacancies per cubic meter for some metal, M, at 783°C. The energy for vacancy formation is 0.95 eV/atom,

while the density and atomic weight for this metal are 6.10 g/cm^3 (at 783°C) and 43.41 g/mol, respectively.
Engineering
1 answer:
djyliett [7]3 years ago
7 0

Answer:

Following are the solution to this question:

Explanation:

The number of vacancies by the cubic meter is determined.  

N_V =N exp(\frac{Q_v}{kT})

      = \frac{N_A \rho}{A} exp (\frac{Q_v}{kT})

      =  \frac{6.022 \times 10^{23} \times 6.10}{43.41} \exp(\frac{-0.95}{8.62\times 10^{-5} \times (783+273)})\\\\=  \frac{36.7342 \times 10^{23}}{43.41} \exp(\frac{-0.95}{0.0313626})\\\\=  0.846215158 \times 10^{23} \exp(-30.290856)\\\\

      =1.57 \times 10^{25} \ cm^{-3}

You might be interested in
A. The ragion was colonized by European powers
alex41 [277]

Answer:

?

Explanation:

3 0
3 years ago
A flywheel made of Grade 30 cast iron (UTS = 217 MPa, UCS = 763 MPa, E = 100 GPa, density = 7100 Kg/m, Poisson's ratio = 0.26) h
hram777 [196]

Answer:

N = 38546.82 rpm

Explanation:

D_{1} = 150 mm

A_{1}= \frac{\pi }{4}\times 150^{2}

              = 17671.45 mm^{2}

D_{2} = 250 mm

A_{2}= \frac{\pi }{4}\times 250^{2}

              = 49087.78 mm^{2}

The centrifugal force acting on the flywheel is fiven by

F = M ( R_{2} - R_{1} ) x w^{2} ------------(1)

Here F = ( -UTS x A_{1} + UCS x A_{2} )

Since density, \rho = \frac{M}{V}

                        \rho = \frac{M}{A\times t}

                        M = \rho \times A\times tM = 7100 \times \frac{\pi }{4}\left ( D_{2}^{2}-D_{1}^{2} \right )\times t

                        M = 7100 \times \frac{\pi }{4}\left ( 250^{2}-150^{2} \right )\times 37

                        M = 8252963901

∴ R_{2} - R_{1} = 50 mm

∴ F = 763\times \frac{\pi }{4}\times 250^{2}-217\times \frac{\pi }{4}\times 150^{2}

  F = 33618968.38 N --------(2)

Now comparing (1) and (2)

33618968.38 = 8252963901\times 50\times \omega ^{2}

∴ ω = 4036.61

We know

\omega = \frac{2\pi N}{60}

4036.61 = \frac{2\pi N}{60}

∴ N = 38546.82 rpm

7 0
4 years ago
Advantages of using metal
Contact [7]

Answer:

Metals have high melting points thus unlikely to degrade when temperatures increase, they can be fabricated and are cost effective due to availability.

Explanation:

Aluminum is the most abundant in the Earth's crust with good thermal and electric properties. It is soft, malleable ,ductile and lighter making it a vital metal in construction industry. An alloy of copper and tin, bronze is a better connector of heat and electricity ,commonly used in automobile industry for bearings and springs production. Steel a carbon alloy has applications in forging and automotive.

4 0
3 years ago
PLEASE HELP QUICK!!
ivolga24 [154]

R01= 14.1 Ω

R02=  0.03525Ω

<h3>Calculations and Parameters</h3>

Given:

K= E2/E1 = 120/2400

= 0.5

R1= 0.1 Ω, X1= 0.22Ω

R2= 0.035Ω, X2= 0.012Ω

The equivalence resistance as referred to both primary and secondary,

R01= R1 + R2

= R1 + R2/K2

= 0.1 + (0.035/9(0.05)^2)

= 14.1 Ω

R02= R2 + R1

=R2 + K^2.R1

= 0.035 + (0.05)^2 * 0.1

= 0.03525Ω

Read more about resistance here:

brainly.com/question/17563681

#SPJ1

5 0
2 years ago
At the instant under consideration, the hydraulic cylinder AB has a length L = 0.75 m, and this length is momentarily increasing
Inessa [10]

Answer:

vB = - 0.176 m/s   (↓-)

Explanation:

Given

(AB) = 0.75 m

(AB)' = 0.2 m/s

vA = 0.6 m/s

θ = 35°

vB = ?

We use the formulas

Sin θ = Sin 35° = (OA)/(AB) ⇒  (OA) = Sin 35°*(AB)

⇒   (OA) = Sin 35°*(0.75 m) = 0.43 m

Cos θ = Cos 35° = (OB)/(AB) ⇒  (OB) = Cos 35°*(AB)

⇒   (OB) = Cos 35°*(0.75 m) = 0.614 m

We apply Pythagoras' theorem as follows

(AB)² = (OA)² + (OB)²

We derive the equation

2*(AB)*(AB)' = 2*(OA)*vA + 2*(OB)*vB

⇒  (AB)*(AB)' = (OA)*vA + (OB)*vB

⇒  vB = ((AB)*(AB)' - (OA)*vA) / (OB)

then we have

⇒  vB = ((0.75 m)*(0.2 m/s) - (0.43 m)*(0.6 m/s) / (0.614 m)

⇒  vB = - 0.176 m/s   (↓-)

The pic can show the question.

7 0
3 years ago
Read 2 more answers
Other questions:
  • An overhead 25m long, uninsulated industrial steam pipe of 100mm diameter is routed through a building whose walls and air are a
    9·1 answer
  • A 179 ‑turn circular coil of radius 3.95 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicu
    11·1 answer
  • You're running an engine and seeing that it is exhausting blue smoke. Which is likely to
    9·1 answer
  • For the same cross-sectional area, which column provides the higher buckling load: a circular bar or a circular tube?
    15·1 answer
  • The Bureau of Labor and Statistics predicted that the field of biomedical engineering would increase by 62 percent over the comi
    5·1 answer
  • When could you use the engineering design process in your own life?
    9·1 answer
  • How do you build a house.
    15·1 answer
  • What is the relationship between compressor work and COPR?
    14·1 answer
  • I love touching the atmospheres crest
    8·1 answer
  • A liquid jet vj of diameter dj strikes a fixed cone and deflects back as a conical sheet at the same velocity. find the cone ang
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!