Answer:
int()
Explanation:
float() is using decimals, so that can't be it, like float(input( "how much does this cost?"))
print() is used to print something, not a user asking, like print("hello")
string() means like a whole, like string( I am good)
By elimination, int() is correct.
Hope this helps!
Complete question:
A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a plane strain fracture toughness of 98.9 MPa root m (90 ksi root in.) and a yield strength of 860 MPa (125,000 psi). The flaw size resolution limit of the flaw detection apparatus is 3.0 mm (0.12 in.). If the design stress is one-half of the yield strength and the value of Y is 1.0, determine whether or not a critical flaw for this plate is subject to detection.
Answer:
Since the flaw 17mm is greater than 3 mm the critical flaw for this plate is subject to detection
so that critical flow is subject to detection
Explanation:
We are given:
Plane strain fracture toughness K ![= 98.9 MPa \sqrt{m}](https://tex.z-dn.net/?f=%20%3D%2098.9%20MPa%20%5Csqrt%7Bm%7D%20)
Yield strength Y = 860 MPa
Flaw detection apparatus = 3.0mm (12in)
y = 1.0
Let's use the expression:
![oc = \frac{K}{Y \sqrt{pi * a}}](https://tex.z-dn.net/?f=%20oc%20%3D%20%5Cfrac%7BK%7D%7BY%20%5Csqrt%7Bpi%20%2A%20a%7D%7D%20)
We already know
K= design
a = length of surface creak
Since we are to find the length of surface creak, we will make "a" subject of the formula in the expression above.
Therefore
![a= \frac{1}{pi} * [\frac{k}{y*a}]^2](https://tex.z-dn.net/?f=%20a%3D%20%5Cfrac%7B1%7D%7Bpi%7D%20%2A%20%5B%5Cfrac%7Bk%7D%7By%2Aa%7D%5D%5E2%20)
Substituting figures in the expression above, we have:
![= \frac{1}{pi} * [\frac{98.9 MPa \sqrt{m}} {10 * \frac{860MPa}{2}}]^2](https://tex.z-dn.net/?f=%20%3D%20%5Cfrac%7B1%7D%7Bpi%7D%20%2A%20%5B%5Cfrac%7B98.9%20MPa%20%5Csqrt%7Bm%7D%7D%20%7B10%20%2A%20%5Cfrac%7B860MPa%7D%7B2%7D%7D%5D%5E2)
= 0.0168 m
= 17mm
Therefore, since the flaw 17mm > 3 mm the critical flow is subject to detection
Answer:
a)
, b) ![T_{H} = 327.78\,K\,(54.63\,^{\textdegree}C)](https://tex.z-dn.net/?f=T_%7BH%7D%20%3D%20327.78%5C%2CK%5C%2C%2854.63%5C%2C%5E%7B%5Ctextdegree%7DC%29)
Explanation:
a) The coefficient of performance of a reversible refrigeration cycle is:
![COP_{R} = \frac{T_{L}}{T_{H}-T_{L}}](https://tex.z-dn.net/?f=COP_%7BR%7D%20%3D%20%5Cfrac%7BT_%7BL%7D%7D%7BT_%7BH%7D-T_%7BL%7D%7D)
Temperatures must be written on absolute scales (Kelvin for SI units, Rankine for Imperial units)
![COP_{R} = \frac{275.15\,K}{286.15\,K-275.15\,K}](https://tex.z-dn.net/?f=COP_%7BR%7D%20%3D%20%5Cfrac%7B275.15%5C%2CK%7D%7B286.15%5C%2CK-275.15%5C%2CK%7D)
![COP_{R} = 25.014](https://tex.z-dn.net/?f=COP_%7BR%7D%20%3D%2025.014)
b) The respective coefficient of performance is determined:
![COP_{R} = \frac{Q_{L}}{Q_{H}-Q_{L}}](https://tex.z-dn.net/?f=COP_%7BR%7D%20%3D%20%5Cfrac%7BQ_%7BL%7D%7D%7BQ_%7BH%7D-Q_%7BL%7D%7D)
![COP_{R} = \frac{8.75\,kW}{10.5\,kW-8.75\,kW}](https://tex.z-dn.net/?f=COP_%7BR%7D%20%3D%20%5Cfrac%7B8.75%5C%2CkW%7D%7B10.5%5C%2CkW-8.75%5C%2CkW%7D)
![COP_{R} = 5](https://tex.z-dn.net/?f=COP_%7BR%7D%20%3D%205)
But:
![COP_{R} = \frac{T_{L}}{T_{H}-T_{L}}](https://tex.z-dn.net/?f=COP_%7BR%7D%20%3D%20%5Cfrac%7BT_%7BL%7D%7D%7BT_%7BH%7D-T_%7BL%7D%7D)
The temperature at hot reservoir is found with some algebraic help:
![COP_{R} \cdot (T_{H}-T_{L})=T_{L}](https://tex.z-dn.net/?f=COP_%7BR%7D%20%5Ccdot%20%28T_%7BH%7D-T_%7BL%7D%29%3DT_%7BL%7D)
![T_{H}-T_{L} = \frac{T_{L}}{COP_{R}}](https://tex.z-dn.net/?f=T_%7BH%7D-T_%7BL%7D%20%3D%20%5Cfrac%7BT_%7BL%7D%7D%7BCOP_%7BR%7D%7D)
![T_{H} = T_{L}\cdot \left(1+\frac{1}{COP_{R}} \right)](https://tex.z-dn.net/?f=T_%7BH%7D%20%3D%20T_%7BL%7D%5Ccdot%20%5Cleft%281%2B%5Cfrac%7B1%7D%7BCOP_%7BR%7D%7D%20%20%5Cright%29)
![T_{H} = 273.15\,K \cdot \left(1+\frac{1}{5} \right)](https://tex.z-dn.net/?f=T_%7BH%7D%20%3D%20273.15%5C%2CK%20%5Ccdot%20%5Cleft%281%2B%5Cfrac%7B1%7D%7B5%7D%20%20%5Cright%29)
![T_{H} = 327.78\,K\,(54.63\,^{\textdegree}C)](https://tex.z-dn.net/?f=T_%7BH%7D%20%3D%20327.78%5C%2CK%5C%2C%2854.63%5C%2C%5E%7B%5Ctextdegree%7DC%29)
Hacking is correcttttttttt
Answer:
Final length of the rod = 13.90 in
Explanation:
Cross Sectional Area of the polythene rod, A = 0.04 in²
Original length of the polythene rod, l = 10 inches
Tensile modulus for the polymer, E = 25,000 psi
Viscosity, ![\eta = 1*10^{9} psi -sec](https://tex.z-dn.net/?f=%5Ceta%20%3D%201%2A10%5E%7B9%7D%20psi%20-sec)
Weight = 358 lbs - f
time, t = 1 hr = 3600 sec
Stress is given by:
![\sigma = \frac{Force}{Area} \\\sigma = \frac{358}{0.04} \\\sigma = 8950 psi](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Cfrac%7BForce%7D%7BArea%7D%20%5C%5C%5Csigma%20%3D%20%5Cfrac%7B358%7D%7B0.04%7D%20%5C%5C%5Csigma%20%3D%208950%20psi)
Based on Maxwell's equation, the strain is given by:
![strain = \sigma ( \frac{1}{E} + \frac{t}{\eta} )\\Strain = 8950 ( \frac{1}{25000} + \frac{3600}{10^{9} } )\\Strain = 0.39022](https://tex.z-dn.net/?f=strain%20%3D%20%5Csigma%20%28%20%5Cfrac%7B1%7D%7BE%7D%20%2B%20%5Cfrac%7Bt%7D%7B%5Ceta%7D%20%29%5C%5CStrain%20%3D%208950%20%28%20%5Cfrac%7B1%7D%7B25000%7D%20%2B%20%5Cfrac%7B3600%7D%7B10%5E%7B9%7D%20%7D%20%29%5C%5CStrain%20%3D%200.39022)
Strain = Extension/(original Length)
0.39022 = Extension/10
Extension = 0.39022 * 10
Extension = 3.9022 in
Extension = Final length - Original length
3.9022 = Final length - 10
Final length = 10 + 3.9022
Final length = 13.9022 in
Final length = 13.90 in