Answer:
16.6 °C
Explanation:
From the question given above, the following data were obtained:
Temperature at upper fixed point (Tᵤ) = 100 °C
Resistance at upper fixed point (Rᵤ) = 75 Ω
Temperature at lower fixed point (Tₗ) = 0 °C
Resistance at lower fixed point (Rₗ) = 63.00Ω
Resistance at room temperature (R) = 64.992 Ω
Room temperature (T) =?
T – Tₗ / Tᵤ – Tₗ = R – Rₗ / Rᵤ – Rₗ
T – 0 / 100 – 0 = 64.992 – 63 / 75 – 63
T / 100 = 1.992 / 12
Cross multiply
T × 12 = 100 × 1.992
T × 12 = 199.2
Divide both side by 12
T = 199.2 / 12
T = 16.6 °C
Thus, the room temperature is 16.6 °C
Answer:
t = T/4
Explanation:
The power delivered to the mass by the spring is work done by the spring per second.

The work done by the spring is equal to the elastic potential energy stored in the spring.

The maximum energy stored in the spring is at the amplitude of the oscillation.

So the first time the mass reaches to its amplitude can be found by the following equation of motion:

When the mass reaches the amplitude:

because cos(π) = 1.

Using ω = 2π/T,

Average speed = (distance covered) / (time to cover the distance)
Average speed = (60 kilometers) / (4 hours)
Average speed = (60/4) kilometer/hour
<em>Average speed = 15 km/hr</em>
Answer:
Two major causes are outline bellow
1. The presence of air in the system
2. Clogged condenser
Explanation:
1. The presence of air in the system
One of the causes that have been established in relation to high compressor discharge pressure is the presence of air in the system. When this takes place, your best solution is to recharge the system.
2. Clogged condenser
Another is a clogged condenser in which case you will need to clean the condenser so that it will function properly. When you happen to spot that the discharge valve is closed and it is causing high discharge pressure on the compressor, you can solve that easily by opening the valve