Answer:
<em>At 574.59 Kelvin, the Fahrenheit temperature will be 574.59 °F.</em>
Explanation:
We first need to find a relation between the Kelvin scale and the Fahranheit scale. We'll use the Celsius scale to relate them.
The Kelvin and Celsius scales are related by the formula:
K = °C + 273.15
Solving for °C:
°C = K - 273.15
Besides, the Kelvin and Celsius scales are related by:
°C = 5 ⁄ 9(°F - 32)
Now we find a temperature, say X, where both scales coincide. Equating both formulas:
X - 273.15=5 ⁄ 9(X - 32)
Multiply by 9:
9X - 2,458.35 = 5X - 160
Simplifying:
4X = 2,458.35 - 160=2,298.35
Solving:
X =2,298.35 / 4 = 574.59
At 574.59 Kelvin, the Fahrenheit temperature will be 574.59 °F.
Answer:
(c) no different than on a low-pressure day.
Explanation:
The force acting on the ship when it floats in water is the buoyant force. According to the Archimedes' principle: The magnitude of buoyant force acting on the body of the object is equal to the volume displaced by the object.
Thus, Buoyant forces are a volume phenomenon and is determined by the volume of the fluid displaced.
<u>Whether it is a high pressure day or a low pressure day, the level of the floating ship is unaffected because the increased or decreased pressure at the all the points of the water and the ship and there will be no change in the volume of the water displaced by the ship.</u>
The current will decrease as the resistance has now increased, meaning less current will be 'let through' the resistor. (assuming it's in series, there's no image)
It's called gravity, it attract the sun toward the gravitational pull making everything circulate. I don't really know how to explain it though.