A.
Explanation:
Pioneer plants are to plants species that appear first in virgin land – such an after a volcanic eruption. They are mainly lower plants such as lichen, fungi, and noses. These species can grow on rocks and break them down over time to form soil. This is due to the fact that the plants have very shallow roots that can even grow in the small crevices of rocks and can draw water from the atmosphere – moisture. This releases the nutrients in the rocks and makes them available to higher plants that have deeper roots. The ecology of the region will ultimately be succeeded by a climax community over time, mainly dominated by tree species.
Answer:
The other electron must have anticlockwise spin.
Explanation:
According to the pauli exclusion principle, the two elecrton present in same orbital must have opposite spin.
If the one electron is clockwise the other must be in anti clockwise direction. The clockwise direction is represented by the sign +1/2 while anti clockwise direction is represented by -1/2.
According the pauli principle, the two electrons must have different fourth electronic quantum number. The electron in same orbital have same first three quantum number i.e, n=1 l=0 and ml =0 in case of first subshell.
Many homeowners treat their lawns with CaCO3(s) to reduce
the acidity of the soil. The net ionic equation for the reaction of CaCO3(s)
with a strong acid, HCl (I chose HCl because it is a strong acid) is CaCO3(s) +2
HCl(aq) → CaCl2(s) + H2O(aq) + CO2(g).
Answer:
(A) The shorter the wavelength, the more total energy the wave contains.
(B) The longer the wavelength, the less total energy the wave contains.
Explanation:
The wavelength (λ), frequency (f) and energy (E) are interrelated. This relationship between them is represented in the following equations:
λ = v/f and E = hf
Where;
λ = wavelength (m)
f = frequency (Hz)
E = energy (Joules)
v and h represents speed of light and Planck's constants respectively.
Combining both equations, E = hc/λ
This equation shows that ENERGY (E) is directly proportional to the frequency (f) but inversely proportional to the wavelength (λ). This means that "the shorter the wavelength, the more total energy a wave contains" and vice versa.
However, the higher the frequency, the more the total energy the wave contains and vice versa.