Hyaline, elastic, & fibrocartilage!
Answer:
The angular acceleration of the pencil<em> α = 17 rad·s⁻²</em>
Explanation:
Using Newton's second angular law or torque to find angular acceleration, we get the following expressions:
τ = I α (1)
W r = I α (2)
The weight is that the pencil has is,
sin 10 = r / (L/2)
r = L/2(sin(10))
The shape of the pencil can be approximated to be a cylinder that rotates on one end and therefore its moment of inertia will be:
I = 1/3 M L²
Thus,
mg(L / 2)sin(10) = (1/3 m L²)(α)
α(f) = 3/2(g) / Lsin(10)
α = 3/2(9.8) / 0.150sin(10)
<em> α = 17 rad·s⁻²</em>
Therefore, the angular acceleration of the pencil<em> </em>is<em> 17 rad·s⁻²</em>
Answer: 
Explanation:
We know that force acting on an object due to Earth's gravity on the surface is given by:

where g is the acceleration due to gravity, r would be radius of Earth, M is the mass of Earth and G is the gravitational constant.
It is given that at pole, g = 9.830 m/s² and r = 6371 km = 6371 × 10³ m



Hence, Earth's mass is 
It is C. A description goes into the details about something, and an explanation is a statement that clarifies something, generally a question.
Answer:
Hello the diagram related to your question is attached below
answer: a) 851 m/s
b) 8506.1 secs
Explanation:
calculate the periodic time of the satellite using the equation below
t =
-- ( 1 )
where ; R = 6370 km
h = 500 km
g = 9.81 m/s^2
input given values into equation 1
t = 5670.75 secs
next calculate the periodic time taken by the space craft
<u>a) determine the increase in speed </u>
V = v -
where ; v = 8463 m/s , R = 6370 km, h = 500 km
V = 851 m/s
b) Determine the periodic time for the elliptic orbit
τ = 
=
= 8506.1 secs
attached below is the remaining part of the detailed solution