The minimum velocity of the Salmon jumping at the given angle is 12.3 m/s.
The given parameters;
- height of the waterfall, h = 0.432 m
- distance of the Salmon from the waterfall, s = 3.17 m
- angle of projection of the Salmon, = 30.8º
The time of motion to fall from 0.432 m is calculated as;

The minimum velocity of the Salmon jumping at the given angle is calculated as;

Thus, the minimum velocity of the Salmon jumping at the given angle is 12.3 m/s.
Learn more here: brainly.com/question/20064545
|acceleration| = (change in speed) / (time for the change)
Change in the car's speed = (27 - 0) = 27 m/s
Time for the change = 10 sec
|acceleration| = (27 m/s) / (10 s) = 2.7 m/s² .
That's the magnitude of the car's acceleration.
We don't know anything about its direction.
Answer:
M[min] = M[basket+people+ balloon, not gas] * ΔR/R[b]
ΔR is the difference in density between the gas inside and surrounding the balloon.
R[b] is the density of gas inside the baloon.
====================================
Let V be the volume of helium required.
Upthrust on helium = Weight of the volume of air displaced = Density of air * g * Volume of helium = 1.225 * g * V
U = 1.225gV newtons
----
Weight of Helium = Volume of Helium * Density of Helium * g
W[h] = 0.18gV N
Net Upward force produced by helium, F = Upthrust - Weight = (1.225-0.18) gV = 1.045gV N -----
Weight of 260kg = 2549.7 N
Then to lift the whole thing, F > 2549.7
So minimal F would be 2549.7
----
1.045gV = 2549.7
V = 248.8 m^3
Mass of helium required = V * Density of Helium = 248.8 * 0.18 = 44.8kg (3sf)
=====
Let the density of the surroundings be R
Then U-W = (1-0.9)RgV = 0.1RgV
So 0.1RgV = 2549.7 N
V = 2549.7 / 0.1Rg
Assuming that R is again 1.255, V = 2071.7 m^3
Then mass of hot air required = 230.2 * 0.9R = 2340 kg
Notice from this that M = 2549.7/0.9Rg * 0.1R so
M[min] = Weight of basket * (difference in density between balloon's gas and surroundings / density of gas in balloon)
M[min] = M[basket] * ΔR/R[b]
Answer:
positions of motion is the answer as moving is a motion