Answer:
The final velocity of the vehicle is 10.39 m/s.
Explanation:
Given;
acceleration of the vehicle, a = 2.7 m/s²
distance moved by the vehicle, d = 20 m
The final velocity of the vehicle is calculated using the following kinematic equation;
v² = u² + 2ah
v² = 0 + 2 x 2.7 x 20
v² = 108
v = √108
v = 10.39 m/s
Therefore, the final velocity of the vehicle is 10.39 m/s.
Answer:
It is d. 0.80
Trust me i got it right took it and got it right
Answer:
The helicopter was deformed and destroyed in the inelastic collision.
Explanation:
- When two object collide there exist two way of colliding: elastic collision and inelastic collision.
- Two terms are considered during the collision: kinetic energy and momentum.
- If both of these terms are conserved in any collision then there is no significant loss of property, this is called as elastic collision.
- If only momentum is conserved but kinetic energy is converted into other forms then it is inelastic collision. In inelastic collision, the energy is lost in the form of vibration, sound etc. causing the damage to colliding object.
- Hence the deformation of helicopter was due to inelastic collision.
Answer:
Eric Schlosser
Explanation:
I am 100% sure this is the right answer hope it helped:)
Either theory or evidence