Miniature circuit breakers is called the developed form of fuse because MCBs are more sensitive to current than fuses. They immediately detect any abnormality and switch off the electrical circuit automatically. This prevents any permanent damage to electrical appliances and human beings
<span>Using conservation of energy and momentum you can solve this question. M_l = mass of linebacker
M_ h = mass of halfback
V_l = velocity of linebacker
V_h = velocity of halfback
So for conservation of momentum,
rho = mv
M_l x V_li + M_h x V_hi = M_l x V_lf + M_h x V_hf
For conservation of energy (kinetic)
E_k = 1/2mv^2/ 1/2mV_li^2 + 1/2mV_{hi}^2 = 1/2mV_{lf}^2 + 1/2mV_{hf}^2
Where i and h stand for initial and final values.
We are already told the masses, \[M_l = 110kg\] \[M_h = 85kg\] and the final velocities \[V_{fi} = 8.5ms^{-1}\] and \[V_{ih} = 7.2ms^{-1} </span>
The cyclist's final velocity is 10 m/s.
From the question,
We are to determine the cyclist's final velocity.
<h3>Linear motion</h3>
From one of the equations of motion for linear motion, we have

Where
v is the final velocity
u is the initial velocity
a is the acceleration
and t is the time
From the given information,
The cyclist starts at rest, this means the initial velocity is 0 m/s
That is,
u = 0 m/s
Also
a = 0.5 m/s²
and t = 20 s
Putting the parameters into the equation, we get



Hence, the cyclist's final velocity is 10 m/s.
Learn more on linear motion here: brainly.com/question/19365526
Answer:

Explanation:
Torque and energy of an electric dipole in an electric field we find:
Answer:
the second one
PLEASE MARK AS BRAINLIEST