Yes sirrr but at least you know now
Answer:
Taking forces along the plane
F cos θ - M g sin θ -100 = M a net of forces along the plane
F = (M a + M g * .5 + 100) / .866 solving for F
F = (80 * 1.5 + 80 * 9.8 * .5 + 100) / .866 = 707 N
F = 707 N acting along the plane
Fn = F sin θ + M g cos θ forces acting perpendicular to plane
Fn = 707 * 1/2 + 80 * 9.8 * .866 = 1030 Newtons forces normal to plane
(this would give a coefficient of friction of 100 / 1030 = .097 = Fn)
Answer: 11,100 ft/s^2
1) Constant acceleration=> uniformly accelerated motion.
2) Formula for uniformly accelerated motion:
Vf = Vo + at
3) Data:
Vo = 1,100 ft/s
a = 1,000 ft/s^2
t = 10.0 s
4) Solution:
Vf = 1,100 ft/s + 1,000 ft/s^2 * 10.0 s = 1,100 ft/s + 10,000 ft/s
Vf = 11,100 ft/s
Bulimia nervosa is similar in many ways because the individual is obsessed with their weight and wants to continuously lose weight to achieve their idea of a 'perfect' body shape. But with bulimia, there are periods of binging and purging. This means that the individual with bulimia may go through a period where they eat an excessive amount of food and then purge by using exercise, medications or vomiting to get rid of the food.
(I copied this from betterhelp.com)
Answer:
The specific question is not stated, however the general idea is given in the attached picture. The electric field in each region can be found by Gauss’ Law.
at r < R:
Since the solid sphere is conducting, the total charge Q is distributed over the surface, and the electric field inside the sphere is zero.
E = 0.
at R < r < 2R:
The electric field can be found by Gauss’ Law as in the attachment. The green pencil shows this exact region.
at 2R < r:
The electric field can again be found by Gauss’ Law, the blue pencil shows the calculations for this region.
Explanation:
Gauss’ Law is straightforward when applied to spheres. The area of the sphere is
, and the enclosed charge is given in the question as Q for the inner sphere, and 2Q for the whole system.