Both A and B technicians are correct because both might be used to test fuses, according to technician B.
<h3>What is continuity?</h3>
The behavior of a function at a certain point or section is described by continuity. The limit can be used to determine continuity.
From the question:
We can conclude:
The technician claims that you may check for continuity using both an ohmmeter and a self-powered test light. Both might be used to test fuses, according to technician B.
Thus, both A and B technicians are correct because both might be used to test fuses, according to technician B.
Technician A says both an ohmmeter and a self-powered test light may be used to test for continuity. Technician B says both may be used to test fuses. Who is correct?
Learn more about the continuity here:
brainly.com/question/15025692
#SPJ1
Answer:

Explanation:
To solve this problem we use the expression for the temperature film

Then, we have to compute the Reynolds number

Re<5*10^{5}, hence, this case if about a laminar flow.
Then, we compute the Nusselt number

but we also now that

but the average heat transfer coefficient is h=2hx
h=2(8.48)=16.97W/m^{2}K
Finally we have that the heat transfer is

In this solution we took values for water properties of
v=16.96*10^{-6}m^{2}s
Pr=0.699
k=26.56*10^{-3}W/mK
A=1*0.5m^{2}
I hope this is useful for you
regards
Answer:

Explanation:
We are given:
m = 1.06Kg

T = 22kj
Therefore we need to find coefficient performance or the cycle


= 5
For the amount of heat absorbed:

= 5 × 22 = 110KJ
For the amount of heat rejected:

= 110 + 22 = 132KJ
[tex[ q_H = \frac{Q_L}{m} [/tex];
= 
= 124.5KJ
Using refrigerant table at hfg = 124.5KJ/Kg we have 69.5°c
Convert 69.5°c to K we have 342.5K
To find the minimum temperature:
;

= 285.4K
Convert to °C we have 12.4°C
From the refrigerant R -134a table at
= 12.4°c we have 442KPa
Answer:
Part 1: It would be a straight line, current will be directly proportional to the voltage.
Part 2: The current would taper off and will have negligible increase after the voltage reaches a certain value. Graph attached.
Explanation:
For the first part, voltage and current have a linear relationship as dictated by the Ohm's law.
V=I*R
where V is the voltage, I is the current, and R is the resistance. As the Voltage increase, current is bound to increase too, given that the resistance remains constant.
In the second part, resistance is not constant. As an element heats up, it consumes more current because the free sea of electrons inside are moving more rapidly, disrupting the flow of charge. So, as the voltage increase, the current does increase, but so does the resistance. Leaving less room for the current to increase. This rise in temperature is shown in the graph attached, as current tapers.
Answer:
a) 246.56 Hz
b) 203.313 Hz
c) Add more springs
Explanation:
Spring constant = 12000 N/m
mass = 5g = 5 * 10^-3 kg
damping ratio = 0.4
<u>a) Calculate Natural frequency </u>
Wn = √k/m = 
= 1549.19 rad/s ≈ 246.56 Hz
<u>b) Bandwidth of instrument </u>
W / Wn = 
W / Wn = 0.8246
therefore Bandwidth ( W ) = Wn * 0.8246 = 246.56 * 0.8246 = 203.313 Hz
C ) To increase the bandwidth we have to add more springs