Answer:
Taking as a basis of calculation 100 mol of gas leaving the conversion reactor, draw andcompletely label a flowchart of this process. Then calculate the moles of fresh methanol feed,formaldehyde product solution, recycled methanol, and absorber off-gas, the kg of steamgenerated in the waste-heat boiler, and the kg of cooling water fed to the heat exchangerbetween the waste-heat boiler and the absorber. Finally, calculate the heat (kJ) that must beremoved in the distillation column overhead condenser, assuming that methanol enters as asaturated vapor at 1 atm and leaves as a saturated liquid at the same pressure.
1
SEE ANSWER
Explanation:
Answer:
Under no circumstances
Explanation:
I'm not 100% sure why, but I remember hearing that you're not suposed to go over the speed limit no matter what
A 3-D model can be communicated, and can also be a visual model.
Answer:
Q= 4.6 × 10⁻³ m³/s
actual velocity will be equal to 8.39 m/s
Explanation:
density of fluid = 900 kg/m³
d₁ = 0.025 m
d₂ = 0.05 m
Δ P = -40 k N/m²
C v = 0.89
using energy equation

under ideal condition v₁² = 0
v₂² = 88.88
v₂ = 9.43 m/s
hence discharge at downstream will be
Q = Av
Q =
Q =
Q= 4.6 × 10⁻³ m³/s
we know that

hence , actual velocity will be equal to 8.39 m/s
Answer:
a)
, b) 
Explanation:
a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

The capacity ratio is:



Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that
. The efectiveness of the heat exchanger is:


The real heat transfer rate is:




The exit temperature of the hot fluid is:




The log mean temperature difference is determined herein:



The heat transfer surface area is:



Length of a single pass counter flow heat exchanger is:



b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.
