Answer:

Explanation:
To solve this equation we will have to consider that the bubble is filled with an Ideal Gas and as such we can use the Ideal Gas Law

Where
= Pressure
= Volume
= Moles
= Ideal Gas Constant
= Temperature
Now since we know that the value for the temperature and moles is constant we can simply use Boyles Law for the two states

Let us look at the two states
State 1 (at top)
Pressure = 
Volume = 
State 2 (at bottom)
Pressure = 
Where
= Density of liquid (1000 kg/m³)
= Acceleration due to gravity (9.8 m/s²)
= Height of liquid (0.200 m)
Pressure = 
Volume = 
Inputting these values into the Boyles Law

To answer this question, it helps enormously if you know
the formula for momentum:
Momentum = (mass) x (speed) .
Looking at the formula, you can see that momentum is directly
proportional to speed. So if speed doubles, so does momentum.
If the car's momentum is 20,000 kg-m/s now, then after its speed
doubles, its momentum has also doubled, to 40,000 kg-m/s.
1. Law of conservation of energy states that energy cannot be created, nor destroyed, for example, windmills take kinetic energy(movement energy) and convert it into electrical energy using gears and a generator as well as the blades.
so this supports it because the pendulum never reaches the same height twice unless you reset it so the energy is always getting less and less and not randomly getting back onto the pendulum.
2.Gravity, friction and air resistance slow it down as well
3. at the top, potential energy is the amount of energy something has relative to the amount it can disperse before stopping, for example, a book on a shelf has more potential energy than that of a book on a table, this is because when the shelf book falls it will create more energy than the table book.
Answer:Negatively charged particle called Free Electrons
Explanation:
Current is the flow of charged particles called Free electrons. Electrons are free to move from one atom to another and we call them a sea of de-localized electrons. In absence of any externally applied emf, these electrons are randomly moving but with the onset of emf, these electrons flow in a particular direction.
Jnejanajajaowowksjajsmamsmnsnsnejeeiei