2AgNO3 + Ni2+ = Ni(NO3)2 + 2Ag<span>+</span>
From the reaction,
it can be seen that AgNO3 and Ni2+ has following amount of substance
relationshep:
n(AgNO3):n(Ni)=2:1
From the relationshep we can determinate requred moles of Ni2+:
n(AgNO3)=m/M= 15.5/169.87=0.09 moles
So, n (Ni)=n(AgNO3)/2=0.045 moles
Finaly needed mass of Ni2+ is:
m(Ni2+)=nxM=0,045x58.7=2.64g
Answer:
Explanation:
you will have to grabe a towle or a meten and take it off
For [Ni(en)³]²⁺ which is purple, the crystal field splitting energy is greater than the complex ion, [Ni(H₂O)₆]²⁺ which is green in color.
When a Lewis base id attached to the metal ion by covalent bond, then the complex ion is formed and when these complex ions are present with other ions of opposite charge or neutral charge, they will make complex compounds.
<span>The equation that represents the process of photosynthesis
is: </span>
<span>
</span>
<span>6CO2+12H2O+light->C6H12O6+6O2+6H2O</span>
<span>
</span>
<span>Photosynthesis is the
process in plants to make their food. This involves the use carbon dioxide to
react with water and make sugar or glucose as the main product and oxygen as a
by-product. Since we are not given the mass of CO2 in this problem, we assume that we have 1 g of CO2 available. We calculate as follows:</span>
<span>
</span>
<span>1 g CO2 ( 1 mol CO2 / 44.01 g CO2 ) ( 12 mol H2O / 6 mol CO2 ) ( 18.02 g / 1 mol ) = 0.82 g of H2O is needed</span>
<span>
</span>
However, if the amount given of CO2 is not one gram, then you can simply change the starting value in the calculation and solve for the mass of water needed.
<span>
</span>
Answer:
NaHCO₃
Explanation:
Sodium bicarbonate (baking soda) is a chemical compound with the formula NaHCO₃.