Answer:
because they devlop our organs
Answer: Motion, providing a burst of power that can move a specific part of the device.
Explanation: Hope this helps
Answer:
1.263 moles of HF
Explanation:
The balance chemical equation for given single replacement reaction is;
Sn + 2 HF → SnF₂ + H₂
Step 1: <u>Calculate Moles of Tin as;</u>
As we know,
Moles = Mass / A.Mass ----- (1)
Where;
Mass of Tin = 75.0 g
A.Mass of Tin = 118.71 g/mol
Putting values in eq. 1;
Moles = 75.0 g / 118.71 g/mol
Moles = 0.6318 moles of Sn
Step 2: <u>Find out moles of Hydrogen Fluoride as;</u>
According to balance chemical equation,
1 mole of Sn reacted with = 2 moles of HF
So,
0.6318 moles of Sn will react with = X moles of HF
Solving for X,
X = 0.6318 mol × 2 mol / 1 mol
X = 1.263 moles of HF
The definition for "What do you call two or more atoms bonded together" is a compound. Think of water. Water is called H20. Water is made of 2 hydrogen atoms and 1 oxygen atom. That is to atoms bonded together to make a compound which is water. Hope I helped
From other sources, the given mass of the solute that is being dissolved here is 7.15 g Na2CO3 - 10H2O. We use this amount to convert it to moles of Na2CO3 by converting it to moles using the molar mass then relating the ratio of the unhydrated salt with the number of water molecules. And by the dissociation of the unhydrated salt in the solution, we can calculate the moles of Na+ ions that are present in the solution.
Na2CO3 = 2Na+ + CO3^2-
7.15 g Na2CO3 - 10H2O (1 mol / 402.9319 g) (1 mol Na2CO3 / 1 mol Na2CO3 - 10H2O) ( 1 mol Na2CO3 / 1 mol Na2CO3-10H2O ) ( 2 mol Na+ / 1 mol Na2CO3) = 0.04 mol Na+ ions present