Toichiometry time! Remember to look at the equation for your molar ratios in other problems.
31.75 g Cu | 1 mol Cu | 2 mol Ag | 107.9 g Ag 6851.65⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ → ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ = 107.9 g Ag ∅ | 63.5 g Cu | 1 mol Cu | 1 mol Ag 63.5
There's also a shorter way to do this: Notice the molar ratio from Cu to Ag, which is 1:2. When you plug in 31.75 into your molar mass for Cu, it equals 1/2 mol. That also means that you have 1 mol Ag because of the ratio, qhich you can then plug into your molar mass, getting 107.9 as well.
They are described through the use of four physical properties or macroscopic characteristics: pressure, volume, number of particles (chemists group them by moles) and temperature.
Answer:
deposition
Explanation:
Sublmation- solid transforming into a gas, skipping the liquid stage.
eveporation- a liquid transformimg into a gas
melting- a solid transforming into a liquid
deposition- the opposite of sublimation (your anwser)
I would say 3.0 cause yeah yeah yeah yeah I’m iann Dior
<u>Answer:</u> The cell potential of the cell is +0.118 V
<u>Explanation:</u>
The half reactions for the cell is:
<u>Oxidation half reaction (anode):</u> 
<u>Reduction half reaction (cathode):</u> 
In this case, the cathode and anode both are same. So,
will be equal to zero.
To calculate cell potential of the cell, we use the equation given by Nernst, which is:
![E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Ni^{2+}_{diluted}]}{[Ni^{2+}_{concentrated}]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.0592%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BNi%5E%7B2%2B%7D_%7Bdiluted%7D%5D%7D%7B%5BNi%5E%7B2%2B%7D_%7Bconcentrated%7D%5D%7D)
where,
n = number of electrons in oxidation-reduction reaction = 2
= ?
= 
= 1.0 M
Putting values in above equation, we get:


Hence, the cell potential of the cell is +0.118 V