Start with Unbalanced Equation and balance it, so...
C7H16+O2--->CO2+H2O
There are 7 C atoms on the left-hand side, so we need 7 C atoms on the right-hand side. Add a 7 in front of the CO2...7CO2+H2O on right side now.
We have fixed 16 H atoms on the left-hand side, so we need 16 H atoms on the right-hand side. Add an 8 in front of H2O to make 16 (8x2)...7CO2+8H2O on right side now.
There are 22 O atoms on the right-hand side: 14 from the CO2 and 8 from the H2O. Add an 11 in front of the O2 on the left side to make 22 (11x2).
Every formula now has a fixed coefficient. You should have a balanced equation of...
C7H16+11O2--->7CO2+8H2O
<span>Answer:
A 0.04403 g sample of gas occupies 10.0-mL at 289.0 K and 1.10 atm. Upon further analysis, the compound is found to be 25.305% C and 74.695% Cl. What is the molecular formula of the compound?
--------------------------------------...
Seems like I did a problem very similar to this--this must be the "B" test. But the halogen was different.
25.305% C/12 = 2.108
74.695% Cl/35.5 = 2.104
So the empirical formula would be CH. However, there are many compounds which fit this bill, so we have to use the gas data. (And I made, in the previous problem, the simplifying assumption that 289C and 1.10 atm would offset each other, so I'll do that, too.)
0.044 grams/10 ml = x/22.4 liters
0.044g/0.010 liters = x/22.4 liters
22.4 liters/0.010 liters = 2240 (ratio)
2240 x .044 = 98.56 (actual atomic weight)
CCl = 35.5+12 or 47.5, so two of those is 95 grams/mole.
This is sufficiient to distinguish C2CL2, (dichloroacetylene)
from C6CL6 (hexachlorobenzene) which would
mass 3 times as much.</span>
Answer:
The signal from the deceleration sensor ignites the gas-generator mixture by an electrical impulse, creating the high-temperature condition necessary for NaN3 to decompose. The nitrogen gas that is generated then fills the airbag.
basically, the nitrogen fills the bag
Answer:
B. gas state at room temperature
Explanation:
Answer: The final temperature will be 
Explanation:
To calculate the specific heat of substance during the reaction.

where,
q = heat absorbed =41840 J
c = specific heat = 
m = mass of water = 200 g
= final temperature =?
= initial temperature = 
Now put all the given values in the above formula, we get:


Thus the final temperature will be 