Answer:
Explanation:
To calculate their average atomic masses which is otherwise known as the relative atomic mass, we simply multiply the given abundances of the atoms and the given atomic masses.
The abundace is the proportion or percentage or fraction by which each of the isotopes of an element occurs in nature.
This can be expressed below:
RAM = Σmₙαₙ
where mₙ is the mass of isotope n
αₙ is the abundance of isotope n
for this problem:
RAM of Li = m₆α₆ + m₇α₇
m₆ is mass of isotope Li-6
α₆ is the abundance of isotope Li-6
m₇ is mass of isotope Li-7
α₇ is the abundance of isotope Li-7
The structural formula of <span>s-allylcysteine is shown in the picture (top figure). To create its Lewis structure, draw all its bonds between elements. Each single bond contains two electrons. There is an octet rule that must be obeyed by most elements. Each element should be surrounded with 8 electrons. The hydrogen is exempted of this rule. So, there are 4 lone pairs for the S atom, 1 lone pair for the N atom, and 2 lone pairs each for the 2 O atoms.</span>
1s2 2s2 2p6 3s2 3p6 4s1
s orbital can hold 2 electron
p orbitals can hold 6 electron
Chemistry developed from alchemy after the 1700s. It was the Alchemist <span>observations and accidental discoveries that brought around modern chemistry.</span>
Answer:
2 ATP
Explanation:
glycolysis is the beginning of cellular respiration and it yielded net ATP of two produced from 1,3 bisphosphoglycerate conversion to 3-phosphoglycerate (2 ATP) and conversion of phosphoenolpyruvate to pyruvate ( 2ATP). One will recall that 2 ATP had been expended in the conversion of glucose to glucose-6-phosphate, and in the conversion of fructose-6-phosphate to fructose -1,6- bisphosphate. Other product of glycolysis are 2 NADH, 2 Pyruvate that may go into kreb cycle for further energy production depending on the organism type of respiration.